|
import imp |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import DropPath |
|
|
|
class UpSampleConvnext(nn.Module): |
|
def __init__(self, ratio, inchannel, outchannel): |
|
super().__init__() |
|
self.ratio = ratio |
|
self.channel_reschedule = nn.Sequential( |
|
|
|
nn.Linear(inchannel, outchannel), |
|
LayerNorm(outchannel, eps=1e-6, data_format="channels_last")) |
|
self.upsample = nn.Upsample(scale_factor=2**ratio, mode='nearest') |
|
def forward(self, x): |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.channel_reschedule(x) |
|
x = x = x.permute(0, 3, 1, 2) |
|
|
|
return self.upsample(x) |
|
|
|
class LayerNorm(nn.Module): |
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape, ) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
class ConvNextBlock(nn.Module): |
|
r""" ConvNeXt Block. There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
""" |
|
def __init__(self, in_channel, hidden_dim, out_channel, kernel_size=3, layer_scale_init_value=1e-6, drop_path= 0.0): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(in_channel, in_channel, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, groups=in_channel) |
|
self.norm = nn.LayerNorm(in_channel, eps=1e-6) |
|
self.pwconv1 = nn.Linear(in_channel, hidden_dim) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(hidden_dim, out_channel) |
|
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((out_channel)), |
|
requires_grad=True) if layer_scale_init_value > 0 else None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |