# -------------------------------------------------------- | |
# Reversible Column Networks | |
# Copyright (c) 2022 Megvii Inc. | |
# Licensed under TheApache License 2.0 [see LICENSE for details] | |
# Written by Yuxuan Cai | |
# -------------------------------------------------------- | |
import os | |
import yaml | |
from yacs.config import CfgNode as CN | |
_C = CN() | |
# Base config files | |
_C.BASE = [''] | |
# ----------------------------------------------------------------------------- | |
# Data settings | |
# ----------------------------------------------------------------------------- | |
_C.DATA = CN() | |
# Batch size for a single GPU, could be overwritten by command line argument | |
_C.DATA.BATCH_SIZE = 128 | |
# Path to dataset, could be overwritten by command line argument | |
_C.DATA.DATA_PATH = 'path/to/imagenet' | |
# Dataset name | |
_C.DATA.DATASET = 'imagenet' | |
# Input image size | |
_C.DATA.IMG_SIZE = 224 | |
# Interpolation to resize image (random, bilinear, bicubic) | |
_C.DATA.INTERPOLATION = 'bicubic' | |
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU. | |
_C.DATA.PIN_MEMORY = True | |
# Number of data loading threads | |
_C.DATA.NUM_WORKERS = 8 | |
# Path to evaluation dataset for ImageNet 22k | |
_C.DATA.EVAL_DATA_PATH = 'path/to/eval/data' | |
# ----------------------------------------------------------------------------- | |
# Model settings | |
# ----------------------------------------------------------------------------- | |
_C.MODEL = CN() | |
# Model type | |
_C.MODEL.TYPE = '' | |
# Model name | |
_C.MODEL.NAME = '' | |
# Checkpoint to resume, could be overwritten by command line argument | |
_C.MODEL.RESUME = '' | |
# Checkpoint to finetune, could be overwritten by command line argument | |
_C.MODEL.FINETUNE = '' | |
# Number of classes, overwritten in data preparation | |
_C.MODEL.NUM_CLASSES = 1000 | |
# Label Smoothing | |
_C.MODEL.LABEL_SMOOTHING = 0.0 | |
# ----------------------------------------------------------------------------- | |
# Specific Model settings | |
# ----------------------------------------------------------------------------- | |
_C.REVCOL = CN() | |
_C.REVCOL.INTER_SUPV = True | |
_C.REVCOL.SAVEMM = True | |
_C.REVCOL.FCOE = 4.0 | |
_C.REVCOL.CCOE = 0.8 | |
_C.REVCOL.KERNEL_SIZE = 3 | |
_C.REVCOL.DROP_PATH = 0.1 | |
_C.REVCOL.HEAD_INIT_SCALE = None | |
# ----------------------------------------------------------------------------- | |
# Training settings | |
# ----------------------------------------------------------------------------- | |
_C.TRAIN = CN() | |
_C.TRAIN.START_EPOCH = 0 | |
_C.TRAIN.EPOCHS = 300 | |
_C.TRAIN.WARMUP_EPOCHS = 5 | |
_C.TRAIN.WEIGHT_DECAY = 4e-5 | |
_C.TRAIN.BASE_LR = 0.4 | |
_C.TRAIN.WARMUP_LR = 0.05 | |
_C.TRAIN.MIN_LR = 1e-5 | |
# Clip gradient norm | |
_C.TRAIN.CLIP_GRAD = 10.0 | |
# Auto resume from latest checkpoint | |
_C.TRAIN.AUTO_RESUME = True | |
# Check point | |
_C.TRAIN.USE_CHECKPOINT = False | |
_C.TRAIN.AMP = True | |
# LR scheduler | |
_C.TRAIN.LR_SCHEDULER = CN() | |
# LR scheduler | |
_C.TRAIN.LR_SCHEDULER.NAME = 'cosine' | |
# Epoch interval to decay LR, used in StepLRScheduler | |
_C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30 | |
# LR decay rate, used in StepLRScheduler | |
_C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1 | |
# Optimizer | |
_C.TRAIN.OPTIMIZER = CN() | |
_C.TRAIN.OPTIMIZER.NAME = 'sgd' | |
# Optimizer Epsilon fow adamw | |
_C.TRAIN.OPTIMIZER.EPS = 1e-8 | |
# Optimizer Betas fow adamw | |
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) | |
# SGD momentum | |
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9 | |
# Layer Decay | |
_C.TRAIN.OPTIMIZER.LAYER_DECAY = 1.0 | |
# ----------------------------------------------------------------------------- | |
# Augmentation settings | |
# ----------------------------------------------------------------------------- | |
_C.AUG = CN() | |
# Color jitter factor | |
_C.AUG.COLOR_JITTER = 0.4 | |
# Use AutoAugment policy. "v0" or "original" | |
_C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1' | |
# Random erase prob | |
_C.AUG.REPROB = 0.25 | |
# Random erase mode | |
_C.AUG.REMODE = 'pixel' | |
# Random erase count | |
_C.AUG.RECOUNT = 1 | |
# Mixup alpha, mixup enabled if > 0 | |
_C.AUG.MIXUP = 0.8 | |
# Cutmix alpha, cutmix enabled if > 0 | |
_C.AUG.CUTMIX = 1.0 | |
# Cutmix min/max ratio, overrides alpha and enables cutmix if set | |
_C.AUG.CUTMIX_MINMAX = None | |
# Probability of performing mixup or cutmix when either/both is enabled | |
_C.AUG.MIXUP_PROB = 1.0 | |
# Probability of switching to cutmix when both mixup and cutmix enabled | |
_C.AUG.MIXUP_SWITCH_PROB = 0.5 | |
# How to apply mixup/cutmix params. Per "batch", "pair", or "elem" | |
_C.AUG.MIXUP_MODE = 'batch' | |
# ----------------------------------------------------------------------------- | |
# Testing settings | |
# ----------------------------------------------------------------------------- | |
_C.TEST = CN() | |
# Whether to use center crop when testing | |
_C.TEST.CROP = True | |
# ----------------------------------------------------------------------------- | |
# Misc | |
# ----------------------------------------------------------------------------- | |
# Path to output folder, overwritten by command line argument | |
_C.OUTPUT = 'outputs/' | |
# Tag of experiment, overwritten by command line argument | |
_C.TAG = 'default' | |
# Frequency to save checkpoint | |
_C.SAVE_FREQ = 1 | |
# Frequency to logging info | |
_C.PRINT_FREQ = 100 | |
# Fixed random seed | |
_C.SEED = 0 | |
# Perform evaluation only, overwritten by command line argument | |
_C.EVAL_MODE = False | |
# Test throughput only, overwritten by command line argument | |
_C.THROUGHPUT_MODE = False | |
# local rank for DistributedDataParallel, given by command line argument | |
_C.LOCAL_RANK = 0 | |
# EMA | |
_C.MODEL_EMA = False | |
_C.MODEL_EMA_DECAY = 0.9999 | |
# Machine | |
_C.MACHINE = CN() | |
_C.MACHINE.MACHINE_WORLD_SIZE = None | |
_C.MACHINE.MACHINE_RANK = None | |
def _update_config_from_file(config, cfg_file): | |
config.defrost() | |
with open(cfg_file, 'r') as f: | |
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader) | |
for cfg in yaml_cfg.setdefault('BASE', ['']): | |
if cfg: | |
_update_config_from_file( | |
config, os.path.join(os.path.dirname(cfg_file), cfg) | |
) | |
print('=> merge config from {}'.format(cfg_file)) | |
config.merge_from_file(cfg_file) | |
config.freeze() | |
def update_config(config, args): | |
_update_config_from_file(config, args.cfg) | |
config.defrost() | |
if args.opts: | |
config.merge_from_list(args.opts) | |
# merge from specific arguments | |
if args.batch_size: | |
config.DATA.BATCH_SIZE = args.batch_size | |
if args.data_path: | |
config.DATA.DATA_PATH = args.data_path | |
if args.resume: | |
config.MODEL.RESUME = args.resume | |
if args.finetune: | |
config.MODEL.FINETUNE = args.finetune | |
if args.use_checkpoint: | |
config.TRAIN.USE_CHECKPOINT = True | |
if args.output: | |
config.OUTPUT = args.output | |
if args.tag: | |
config.TAG = args.tag | |
if args.eval: | |
config.EVAL_MODE = True | |
if args.model_ema: | |
config.MODEL_EMA = True | |
config.dist_url = args.dist_url | |
# set local rank for distributed training | |
config.LOCAL_RANK = args.local_rank | |
# output folder | |
config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG) | |
config.freeze() | |
def get_config(args): | |
"""Get a yacs CfgNode object with default values.""" | |
# Return a clone so that the defaults will not be altered | |
# This is for the "local variable" use pattern | |
config = _C.clone() | |
update_config(config, args) | |
return config | |