|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import re |
|
from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor |
|
from mmcv.runner import get_dist_info |
|
import numpy as np |
|
|
|
def cal_model_depth(depth, num_subnet): |
|
dp = np.zeros((depth, num_subnet)) |
|
dp[:,0]=np.linspace(0, depth-1, depth) |
|
dp[0,:]=np.linspace(0, num_subnet-1, num_subnet) |
|
for i in range(1, depth): |
|
for j in range(1, num_subnet): |
|
dp[i][j] = min(dp[i][j-1], dp[i-1][j])+1 |
|
dp = dp.astype(int) |
|
|
|
|
|
dp = dp+1 |
|
return dp |
|
|
|
def get_num_layer_layer_wise(n, layers, num_subnet=12): |
|
dp=cal_model_depth(sum(layers), num_subnet) |
|
|
|
if n.startswith("backbone.subnet"): |
|
n=n[9:] |
|
name_part = n.split('.') |
|
subnet = int(name_part[0][6:]) |
|
if name_part[1].startswith("alpha"): |
|
id = dp[0][subnet] |
|
else: |
|
level = int(name_part[1][-1]) |
|
if name_part[2].startswith("blocks"): |
|
sub = int(name_part[3]) |
|
if sub>layers[level]-1: |
|
sub = layers[level]-1 |
|
block = sum(layers[:level])+sub |
|
|
|
if name_part[2].startswith("fusion"): |
|
block = sum(layers[:level]) |
|
id = dp[block][subnet] |
|
elif n.startswith("backbone.stem"): |
|
id = 0 |
|
else: |
|
id = dp[-1][-1]+1 |
|
return id |
|
|
|
|
|
|
|
@OPTIMIZER_BUILDERS.register_module() |
|
class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor): |
|
def add_params(self, params, module, prefix='', is_dcn_module=None): |
|
"""Add all parameters of module to the params list. |
|
The parameters of the given module will be added to the list of param |
|
groups, with specific rules defined by paramwise_cfg. |
|
Args: |
|
params (list[dict]): A list of param groups, it will be modified |
|
in place. |
|
module (nn.Module): The module to be added. |
|
prefix (str): The prefix of the module |
|
is_dcn_module (int|float|None): If the current module is a |
|
submodule of DCN, `is_dcn_module` will be passed to |
|
control conv_offset layer's learning rate. Defaults to None. |
|
""" |
|
parameter_groups = {} |
|
print(self.paramwise_cfg) |
|
num_layers = cal_model_depth(sum(self.paramwise_cfg.get('layers')), self.paramwise_cfg.get('num_subnet'))[-1][-1]+2 |
|
|
|
decay_rate = self.paramwise_cfg.get('decay_rate') |
|
decay_type = self.paramwise_cfg.get('decay_type', "layer_wise") |
|
print("Build LearningRateDecayOptimizerConstructor %s %f - %d" % (decay_type, decay_rate, num_layers)) |
|
weight_decay = self.base_wd |
|
|
|
for name, param in module.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token') or re.match('(.*).alpha.$', name): |
|
group_name = "no_decay" |
|
this_weight_decay = 0. |
|
else: |
|
group_name = "decay" |
|
this_weight_decay = weight_decay |
|
|
|
if decay_type == "layer_wise": |
|
layer_id = get_num_layer_layer_wise(name, self.paramwise_cfg.get('layers'), self.paramwise_cfg.get('num_subnet')) |
|
|
|
group_name = "layer_%d_%s" % (layer_id, group_name) |
|
|
|
if group_name not in parameter_groups: |
|
scale = decay_rate ** (num_layers - layer_id - 1) |
|
|
|
parameter_groups[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"param_names": [], |
|
"lr_scale": scale, |
|
"group_name": group_name, |
|
"lr": scale * self.base_lr, |
|
} |
|
|
|
parameter_groups[group_name]["params"].append(param) |
|
parameter_groups[group_name]["param_names"].append(name) |
|
rank, _ = get_dist_info() |
|
if rank == 0: |
|
to_display = {} |
|
for key in parameter_groups: |
|
to_display[key] = { |
|
"param_names": parameter_groups[key]["param_names"], |
|
"lr_scale": parameter_groups[key]["lr_scale"], |
|
"lr": parameter_groups[key]["lr"], |
|
"weight_decay": parameter_groups[key]["weight_decay"], |
|
} |
|
print("Param groups = %s" % json.dumps(to_display, indent=2)) |
|
|
|
params.extend(parameter_groups.values()) |