RevCol / training /Detection /mmcv_custom /layer_decay_optimizer_constructor.py
LarryTsai's picture
Training Code:cls/det
b9425fd
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import re
from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor
from mmcv.runner import get_dist_info
import numpy as np
def cal_model_depth(depth, num_subnet):
dp = np.zeros((depth, num_subnet))
dp[:,0]=np.linspace(0, depth-1, depth)
dp[0,:]=np.linspace(0, num_subnet-1, num_subnet)
for i in range(1, depth):
for j in range(1, num_subnet):
dp[i][j] = min(dp[i][j-1], dp[i-1][j])+1
dp = dp.astype(int)
# col = [x for x in np.linspace(0, sum(self.layers)-1, sum(self.layers))]
# dp = np.transpose(np.array([col]*self.num_subnet, dtype=int))
dp = dp+1 ## make layer id starts from 1
return dp
def get_num_layer_layer_wise(n, layers, num_subnet=12):
dp=cal_model_depth(sum(layers), num_subnet)
# def get_layer_id(n, dp, layers):
if n.startswith("backbone.subnet"):
n=n[9:]
name_part = n.split('.')
subnet = int(name_part[0][6:])
if name_part[1].startswith("alpha"):
id = dp[0][subnet]
else:
level = int(name_part[1][-1])
if name_part[2].startswith("blocks"):
sub = int(name_part[3])
if sub>layers[level]-1:
sub = layers[level]-1
block = sum(layers[:level])+sub
if name_part[2].startswith("fusion"):
block = sum(layers[:level])
id = dp[block][subnet]
elif n.startswith("backbone.stem"):
id = 0
else:
id = dp[-1][-1]+1
return id
@OPTIMIZER_BUILDERS.register_module()
class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor):
def add_params(self, params, module, prefix='', is_dcn_module=None):
"""Add all parameters of module to the params list.
The parameters of the given module will be added to the list of param
groups, with specific rules defined by paramwise_cfg.
Args:
params (list[dict]): A list of param groups, it will be modified
in place.
module (nn.Module): The module to be added.
prefix (str): The prefix of the module
is_dcn_module (int|float|None): If the current module is a
submodule of DCN, `is_dcn_module` will be passed to
control conv_offset layer's learning rate. Defaults to None.
"""
parameter_groups = {}
print(self.paramwise_cfg)
num_layers = cal_model_depth(sum(self.paramwise_cfg.get('layers')), self.paramwise_cfg.get('num_subnet'))[-1][-1]+2
# num_layers = self.paramwise_cfg.get('num_layers') + 2
decay_rate = self.paramwise_cfg.get('decay_rate')
decay_type = self.paramwise_cfg.get('decay_type', "layer_wise")
print("Build LearningRateDecayOptimizerConstructor %s %f - %d" % (decay_type, decay_rate, num_layers))
weight_decay = self.base_wd
for name, param in module.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token') or re.match('(.*).alpha.$', name):
group_name = "no_decay"
this_weight_decay = 0.
else:
group_name = "decay"
this_weight_decay = weight_decay
if decay_type == "layer_wise":
layer_id = get_num_layer_layer_wise(name, self.paramwise_cfg.get('layers'), self.paramwise_cfg.get('num_subnet'))
group_name = "layer_%d_%s" % (layer_id, group_name)
if group_name not in parameter_groups:
scale = decay_rate ** (num_layers - layer_id - 1)
parameter_groups[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"param_names": [],
"lr_scale": scale,
"group_name": group_name,
"lr": scale * self.base_lr,
}
parameter_groups[group_name]["params"].append(param)
parameter_groups[group_name]["param_names"].append(name)
rank, _ = get_dist_info()
if rank == 0:
to_display = {}
for key in parameter_groups:
to_display[key] = {
"param_names": parameter_groups[key]["param_names"],
"lr_scale": parameter_groups[key]["lr_scale"],
"lr": parameter_groups[key]["lr"],
"weight_decay": parameter_groups[key]["weight_decay"],
}
print("Param groups = %s" % json.dumps(to_display, indent=2))
params.extend(parameter_groups.values())