RevCol / training /main.py
LarryTsai's picture
Training Code:cls/det
b9425fd
# --------------------------------------------------------
# Reversible Column Networks
# Copyright (c) 2022 Megvii Inc.
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Yuxuan Cai
# --------------------------------------------------------
import math
import os
import subprocess
import sys
import time
import argparse
import datetime
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.transforms.functional as visionF
import torch.cuda.amp as amp
from typing import Optional
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import accuracy, AverageMeter
from timm.utils import ModelEma as ModelEma
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from config import get_config
from models import *
from loss import *
from data import build_loader
from lr_scheduler import build_scheduler
from optimizer import build_optimizer
from logger import create_logger
from utils import denormalize, load_checkpoint, load_checkpoint_finetune, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor
from torch.utils.tensorboard import SummaryWriter
scaler = amp.GradScaler()
logger = None
def parse_option():
parser = argparse.ArgumentParser('Swin Transformer training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
# easy config modification
parser.add_argument('--batch-size', type=int, default=128, help="batch size for single GPU")
parser.add_argument('--data-path', type=str, default='data', help='path to dataset')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--finetune', help='finetune from checkpoint')
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--output', default='outputs/', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
# ema
parser.add_argument('--model-ema', action='store_true')
# distributed training
parser.add_argument("--local_rank", type=int, required=False, help='local rank for DistributedDataParallel')
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
args, unparsed = parser.parse_known_args()
# print(args)
config = get_config(args)
return args, config
def main(config):
config.defrost()
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
return
# linear scale the learning rate according to total batch size, base bs 1024
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * world_size / 1024.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * world_size / 1024.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * world_size / 1024.0
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
dist.init_process_group(
backend='nccl', init_method=config.dist_url,
world_size=world_size, rank=rank,
)
seed = config.SEED + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.set_device(rank)
global logger
logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}")
logger.info(config.dump())
writer = None
if dist.get_rank() == 0:
writer = SummaryWriter(config.OUTPUT)
dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(config)
logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}")
model = build_model(config)
model.cuda()
logger.info(str(model)[:10000])
model_ema = None
if config.MODEL_EMA:
# Important to create EMA model after cuda(), DP wrapper, and AMP but
# before SyncBN and DDP wrapper
logger.info(f"Using EMA...")
model_ema = ModelEma(
model,
decay=config.MODEL_EMA_DECAY,
)
optimizer = build_optimizer(config, model)
if config.TRAIN.AMP:
logger.info(f"-------------------------------Using Pytorch AMP...--------------------------------")
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False, find_unused_parameters=False)
# model._set_static_graph()
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
lr_scheduler = build_scheduler(config)
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
criterion_bce = torch.nn.BCEWithLogitsLoss()
max_accuracy = 0.0
if config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT, logger)
if resume_file:
if config.MODEL.RESUME:
logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}")
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
if config.MODEL.RESUME:
max_accuracy = load_checkpoint(config, model_without_ddp, optimizer, logger, model_ema)
logger.info(f"Start validation")
acc1, acc5, loss = validate(config, data_loader_val, model, writer, epoch=config.TRAIN.START_EPOCH)
logger.info(f"Accuracy of the network on the 50000 test images: {acc1:.1f}, {acc5:.1f}%")
if config.EVAL_MODE:
return
if config.MODEL.FINETUNE:
load_checkpoint_finetune(config, model_without_ddp, logger)
logger.info("Start training")
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(config, model, criterion, criterion_bce, data_loader_train, optimizer, epoch, mixup_fn, lr_scheduler, writer, model_ema)
acc1, acc5, _ = validate(config, data_loader_val, model, writer, epoch)
logger.info(f"Accuracy of the network on the 5000 test images: {acc1:.2f}, {acc5:.2f}%")
if config.MODEL_EMA:
acc1_ema, acc5_ema, _ = validate_ema(config, data_loader_val, model_ema.ema, writer, epoch)
logger.info(f"Accuracy of the EMA network on the 5000 test images: {acc1_ema:.1f}, {acc5_ema:.1f}%")
# acc1 = max(acc1, acc1_ema)
if dist.get_rank() == 0 and epoch % config.SAVE_FREQ == 0:
save_checkpoint(config, epoch, model_without_ddp, acc1, max_accuracy, optimizer, logger, model_ema)
max_accuracy = max(max_accuracy, acc1)
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch(config, model, criterion_ce, criterion_bce, data_loader, optimizer, epoch, mixup_fn, lr_scheduler, writer, model_ema: Optional[ModelEma] = None):
global logger
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
data_time = AverageMeter()
start = time.time()
end = time.time()
for idx, (samples, targets) in enumerate(data_loader):
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
data_time.update(time.time()-end)
lr_scheduler.step_update(optimizer, idx / num_steps + epoch, config)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with amp.autocast(enabled=config.TRAIN.AMP):
output_label, output_feature = model(samples)
if len(output_label) == 1:
loss = criterion_ce(output_label[0], targets)
multi_loss = []
else:
loss, multi_loss = compound_loss((config.REVCOL.FCOE, config.REVCOL.CCOE), output_feature, denormalize(samples, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), output_label, targets, criterion_bce, criterion_ce, epoch)
if not math.isfinite(loss.item()):
print("Loss is {} in iteration {}, multiloss {}, !".format(loss.item(), idx, multi_loss))
scaler.scale(loss).backward()
if config.TRAIN.CLIP_GRAD:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
else:
scaler.unscale_(optimizer)
grad_norm = get_grad_norm(model.parameters())
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
loss_meter.update(loss.item(), targets.size(0))
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if dist.get_rank() == 0 and idx%10 == 0:
writer.add_scalar('Train/train_loss',loss_meter.val, epoch * num_steps + idx )
writer.add_scalar('Train/grad_norm',norm_meter.val, epoch * num_steps + idx )
for i, subloss in enumerate(multi_loss):
writer.add_scalar(f'Train/sub_loss{i}', subloss, epoch * num_steps + idx)
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[-1]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'datatime {data_time.val:.4f} ({data_time.avg:.4f})\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
@torch.no_grad()
def validate(config, data_loader, model, writer, epoch):
global logger
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter_list = []
acc5_meter_list = []
for i in range(4):
acc1_meter_list.append(AverageMeter())
acc5_meter_list.append(AverageMeter())
end = time.time()
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
outputs,_ = model(images)
if len(acc1_meter_list) != len(outputs):
acc1_meter_list = acc1_meter_list[:len(outputs)]
acc5_meter_list = acc5_meter_list[:len(outputs)]
output_last = outputs[-1]
loss = criterion(output_last, target)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
for i, subnet_out in enumerate(outputs):
acc1, acc5 = accuracy(subnet_out, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
acc1_meter_list[i].update(acc1.item(), target.size(0))
acc5_meter_list[i].update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter_list[-1].val:.3f} ({acc1_meter_list[-1].avg:.3f})\t'
f'Acc@5 {acc5_meter_list[-1].val:.3f} ({acc5_meter_list[-1].avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
logger.info(f' * Acc@1 {acc1_meter_list[-1].avg:.3f} Acc@5 {acc5_meter_list[-1].avg:.3f}')
if dist.get_rank() == 0:
for i in range(len(acc1_meter_list)):
writer.add_scalar(f'Val_top1/acc_{i}', acc1_meter_list[i].avg, epoch)
writer.add_scalar(f'Val_top5/acc_{i}', acc5_meter_list[i].avg, epoch)
return acc1_meter_list[-1].avg, acc5_meter_list[-1].avg, loss_meter.avg
@torch.no_grad()
def validate_ema(config, data_loader, model, writer, epoch):
global logger
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
outputs,_ = model(images)
output_last = outputs[-1]
loss = criterion(output_last, target)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1, acc5 = accuracy(output_last, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
if __name__ == '__main__':
_, config = parse_option()
cudnn.benchmark = True
os.makedirs(config.OUTPUT, exist_ok=True)
ngpus_per_node = torch.cuda.device_count()
main(None, config, ngpus_per_node)