RevCol / training /models /modules.py
LarryTsai's picture
Training Code:cls/det
b9425fd
# --------------------------------------------------------
# Reversible Column Networks
# Copyright (c) 2022 Megvii Inc.
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Yuxuan Cai
# --------------------------------------------------------
import imp
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath
class UpSampleConvnext(nn.Module):
def __init__(self, ratio, inchannel, outchannel):
super().__init__()
self.ratio = ratio
self.channel_reschedule = nn.Sequential(
# LayerNorm(inchannel, eps=1e-6, data_format="channels_last"),
nn.Linear(inchannel, outchannel),
LayerNorm(outchannel, eps=1e-6, data_format="channels_last"))
self.upsample = nn.Upsample(scale_factor=2**ratio, mode='nearest')
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = self.channel_reschedule(x)
x = x = x.permute(0, 3, 1, 2)
return self.upsample(x)
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first", elementwise_affine = True):
super().__init__()
self.elementwise_affine = elementwise_affine
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
if self.elementwise_affine:
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class ConvNextBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, in_channel, hidden_dim, out_channel, kernel_size=3, layer_scale_init_value=1e-6, drop_path= 0.0):
super().__init__()
self.dwconv = nn.Conv2d(in_channel, in_channel, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, groups=in_channel) # depthwise conv
self.norm = nn.LayerNorm(in_channel, eps=1e-6)
self.pwconv1 = nn.Linear(in_channel, hidden_dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(hidden_dim, out_channel)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((out_channel)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
# print(f"x min: {x.min()}, x max: {x.max()}, input min: {input.min()}, input max: {input.max()}, x mean: {x.mean()}, x var: {x.var()}, ratio: {torch.sum(x>8)/x.numel()}")
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class Decoder(nn.Module):
def __init__(self, depth=[2,2,2,2], dim=[112, 72, 40, 24], block_type = None, kernel_size = 3) -> None:
super().__init__()
self.depth = depth
self.dim = dim
self.block_type = block_type
self._build_decode_layer(dim, depth, kernel_size)
self.projback = nn.Sequential(
nn.Conv2d(
in_channels=dim[-1],
out_channels=4 ** 2 * 3, kernel_size=1),
nn.PixelShuffle(4),
)
def _build_decode_layer(self, dim, depth, kernel_size):
normal_layers = nn.ModuleList()
upsample_layers = nn.ModuleList()
proj_layers = nn.ModuleList()
norm_layer = LayerNorm
for i in range(1, len(dim)):
module = [self.block_type(dim[i], dim[i], dim[i], kernel_size) for _ in range(depth[i])]
normal_layers.append(nn.Sequential(*module))
upsample_layers.append(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True))
proj_layers.append(nn.Sequential(
nn.Conv2d(dim[i-1], dim[i], 1, 1),
norm_layer(dim[i]),
nn.GELU()
))
self.normal_layers = normal_layers
self.upsample_layers = upsample_layers
self.proj_layers = proj_layers
def _forward_stage(self, stage, x):
x = self.proj_layers[stage](x)
x = self.upsample_layers[stage](x)
return self.normal_layers[stage](x)
def forward(self, c3):
x = self._forward_stage(0, c3) #14
x = self._forward_stage(1, x) #28
x = self._forward_stage(2, x) #56
x = self.projback(x)
return x
class SimDecoder(nn.Module):
def __init__(self, in_channel, encoder_stride) -> None:
super().__init__()
self.projback = nn.Sequential(
LayerNorm(in_channel),
nn.Conv2d(
in_channels=in_channel,
out_channels=encoder_stride ** 2 * 3, kernel_size=1),
nn.PixelShuffle(encoder_stride),
)
def forward(self, c3):
return self.projback(c3)