Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,79 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Reversible Column Networks
|
2 |
+
This repo is the official implementation of:
|
3 |
+
|
4 |
+
### [Reversible Column Networks](https://arxiv.org/abs/2212.11696)
|
5 |
+
[Yuxuan Cai](https://nightsnack.github.io), [Yizhuang Zhou](https://scholar.google.com/citations?user=VRSGDDEAAAAJ), [Qi Han](https://hanqer.github.io), Jianjian Sun, Xiangwen Kong, Jun Li, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ) \
|
6 |
+
[MEGVII Technology](https://en.megvii.com)\
|
7 |
+
International Conference on Learning Representations (ICLR) 2023\
|
8 |
+
[\[arxiv\]](https://arxiv.org/abs/2212.11696)
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Updates
|
13 |
+
***2/10/2023***\
|
14 |
+
RevCol model weights released.
|
15 |
+
|
16 |
+
***1/21/2023***\
|
17 |
+
RevCol was accepted by ICLR 2023!
|
18 |
+
|
19 |
+
***12/23/2022***\
|
20 |
+
Initial commits: codes for ImageNet-1k and ImageNet-22k classification are released.
|
21 |
+
|
22 |
+
|
23 |
+
## To Do List
|
24 |
+
|
25 |
+
|
26 |
+
- [x] ImageNet-1K and 22k Training Code
|
27 |
+
- [x] ImageNet-1K and 22k Model Weights
|
28 |
+
- [ ] Cascade Mask R-CNN COCO Object Detection Code & Model Weights
|
29 |
+
- [ ] ADE20k Semantic Segmentation Code & Model Weights
|
30 |
+
|
31 |
+
|
32 |
+
## Introduction
|
33 |
+
RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. RevCol coud serves as a foundation model backbone for various tasks in computer vision including classification, detection and segmentation.
|
34 |
+
|
35 |
+
<p align="center">
|
36 |
+
<img src="figures/title.png" width=100% height=100%
|
37 |
+
class="center">
|
38 |
+
</p>
|
39 |
+
|
40 |
+
## Main Results on ImageNet with Pre-trained Models
|
41 |
+
|
42 |
+
| name | pretrain | resolution | #params |FLOPs | acc@1 | pretrained model | finetuned model |
|
43 |
+
|:---------------------:| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
44 |
+
| RevCol-T | ImageNet-1K | 224x224 | 30M | 4.5G | 82.2 | [baidu](https://pan.baidu.com/s/1iGsbdmFcDpwviCHaajeUnA?pwd=h4tj)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_tiny_1k.pth) | - |
|
45 |
+
| RevCol-S | ImageNet-1K | 224x224 | 60M | 9.0G | 83.5 | [baidu](https://pan.baidu.com/s/1hpHfdFrTZIPB5NTwqDMLag?pwd=mxuk)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_small_1k.pth) | - |
|
46 |
+
| RevCol-B | ImageNet-1K | 224x224 | 138M | 16.6G | 84.1 | [baidu](https://pan.baidu.com/s/16XIJ1n8pXPD2cXwnFX6b9w?pwd=j6x9)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_1k.pth) | - |
|
47 |
+
| RevCol-B<sup>\*</sup> | ImageNet-22K | 224x224 | 138M | 16.6G | 85.6 |[baidu](https://pan.baidu.com/s/1l8zOFifgC8fZtBpHK2ZQHg?pwd=rh58)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k.pth)| [baidu](https://pan.baidu.com/s/1HqhDXL6OIQdn1LeM2pewYQ?pwd=1bp3)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k_1kft_224.pth)|
|
48 |
+
| RevCol-B<sup>\*</sup> | ImageNet-22K | 384x384 | 138M | 48.9G | 86.7 |[baidu](https://pan.baidu.com/s/1l8zOFifgC8fZtBpHK2ZQHg?pwd=rh58)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k.pth)| [baidu](https://pan.baidu.com/s/18G0zAUygKgu58s2AjCBpsw?pwd=rv86)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k_1kft_384.pth)|
|
49 |
+
| RevCol-L<sup>\*</sup> | ImageNet-22K | 224x224 | 273M | 39G | 86.6 |[baidu](https://pan.baidu.com/s/1ueKqh3lFAAgC-vVU34ChYA?pwd=qv5m)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k.pth)| [baidu](https://pan.baidu.com/s/1CsWmcPcwieMzXE8pVmHh7w?pwd=qd9n)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k_1kft_224.pth)|
|
50 |
+
| RevCol-L<sup>\*</sup> | ImageNet-22K | 384x384 | 273M | 116G | 87.6 |[baidu](https://pan.baidu.com/s/1ueKqh3lFAAgC-vVU34ChYA?pwd=qv5m)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k.pth)| [baidu](https://pan.baidu.com/s/1VmCE3W3Xw6-Lo4rWrj9Xzg?pwd=x69r)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k_1kft_384.pth)|
|
51 |
+
|
52 |
+
## Getting Started
|
53 |
+
Please refer to [INSTRUCTIONS.md](INSTRUCTIONS.md) for setting up, training and evaluation details.
|
54 |
+
|
55 |
+
|
56 |
+
## Acknowledgement
|
57 |
+
This repo was inspired by several open source projects. We are grateful for these excellent projects and list them as follows:
|
58 |
+
- [timm](https://github.com/rwightman/pytorch-image-models)
|
59 |
+
- [Swin Transformer](https://github.com/microsoft/Swin-Transformer)
|
60 |
+
- [ConvNeXt](https://github.com/facebookresearch/ConvNeXt)
|
61 |
+
- [beit](https://github.com/microsoft/unilm/tree/master/beit)
|
62 |
+
|
63 |
+
## License
|
64 |
+
RevCol is released under the [Apache 2.0 license](LICENSE).
|
65 |
+
|
66 |
+
## Contact Us
|
67 |
+
If you have any questions about this repo or the original paper, please contact Yuxuan at [email protected].
|
68 |
+
|
69 |
+
|
70 |
+
## Citation
|
71 |
+
```
|
72 |
+
@inproceedings{cai2022reversible,
|
73 |
+
title={Reversible Column Networks},
|
74 |
+
author={Cai, Yuxuan and Zhou, Yizhuang and Han, Qi and Sun, Jianjian and Kong, Xiangwen and Li, Jun and Zhang, Xiangyu},
|
75 |
+
booktitle={International Conference on Learning Representations},
|
76 |
+
year={2023},
|
77 |
+
url={https://openreview.net/forum?id=Oc2vlWU0jFY}
|
78 |
+
}
|
79 |
+
```
|