LarryTsai commited on
Commit
fa566a7
1 Parent(s): b0f1703

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -3
README.md CHANGED
@@ -1,3 +1,6 @@
 
 
 
1
  # Reversible Column Networks
2
  This repo is the official implementation of:
3
 
@@ -10,8 +13,11 @@ International Conference on Learning Representations (ICLR) 2023\
10
 
11
 
12
  ## Updates
13
- ***3/9/2023***\
14
- RevCol Detection & Segmentation model weights released.
 
 
 
15
 
16
  ***2/10/2023***\
17
  RevCol model weights released.
@@ -36,6 +42,7 @@ Initial commits: codes for ImageNet-1k and ImageNet-22k classification are relea
36
  RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. RevCol coud serves as a foundation model backbone for various tasks in computer vision including classification, detection and segmentation.
37
 
38
 
 
39
  ## Main Results on ImageNet with Pre-trained Models
40
 
41
  | name | pretrain | resolution | #params |FLOPs | acc@1 | pretrained model | finetuned model |
@@ -47,7 +54,9 @@ RevCol is composed of multiple copies of subnetworks, named columns respectively
47
  | RevCol-B<sup>\*</sup> | ImageNet-22K | 384x384 | 138M | 48.9G | 86.7 |[baidu](https://pan.baidu.com/s/1l8zOFifgC8fZtBpHK2ZQHg?pwd=rh58)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k.pth)| [baidu](https://pan.baidu.com/s/18G0zAUygKgu58s2AjCBpsw?pwd=rv86)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k_1kft_384.pth)|
48
  | RevCol-L<sup>\*</sup> | ImageNet-22K | 224x224 | 273M | 39G | 86.6 |[baidu](https://pan.baidu.com/s/1ueKqh3lFAAgC-vVU34ChYA?pwd=qv5m)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k.pth)| [baidu](https://pan.baidu.com/s/1CsWmcPcwieMzXE8pVmHh7w?pwd=qd9n)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k_1kft_224.pth)|
49
  | RevCol-L<sup>\*</sup> | ImageNet-22K | 384x384 | 273M | 116G | 87.6 |[baidu](https://pan.baidu.com/s/1ueKqh3lFAAgC-vVU34ChYA?pwd=qv5m)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k.pth)| [baidu](https://pan.baidu.com/s/1VmCE3W3Xw6-Lo4rWrj9Xzg?pwd=x69r)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k_1kft_384.pth)|
 
50
 
 
51
  ## Getting Started
52
  Please refer to [INSTRUCTIONS.md](INSTRUCTIONS.md) for setting up, training and evaluation details.
53
 
@@ -75,4 +84,4 @@ If you have any questions about this repo or the original paper, please contact
75
  year={2023},
76
  url={https://openreview.net/forum?id=Oc2vlWU0jFY}
77
  }
78
- ```
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
  # Reversible Column Networks
5
  This repo is the official implementation of:
6
 
 
13
 
14
 
15
  ## Updates
16
+ **3/15/2023***\
17
+ RevCol Huge checkpoint for segmentation released! Add visualization tools.
18
+
19
+ **3/9/2023***\
20
+ Detection, Segmentation Code and Model Weights Released.
21
 
22
  ***2/10/2023***\
23
  RevCol model weights released.
 
42
  RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. RevCol coud serves as a foundation model backbone for various tasks in computer vision including classification, detection and segmentation.
43
 
44
 
45
+
46
  ## Main Results on ImageNet with Pre-trained Models
47
 
48
  | name | pretrain | resolution | #params |FLOPs | acc@1 | pretrained model | finetuned model |
 
54
  | RevCol-B<sup>\*</sup> | ImageNet-22K | 384x384 | 138M | 48.9G | 86.7 |[baidu](https://pan.baidu.com/s/1l8zOFifgC8fZtBpHK2ZQHg?pwd=rh58)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k.pth)| [baidu](https://pan.baidu.com/s/18G0zAUygKgu58s2AjCBpsw?pwd=rv86)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_base_22k_1kft_384.pth)|
55
  | RevCol-L<sup>\*</sup> | ImageNet-22K | 224x224 | 273M | 39G | 86.6 |[baidu](https://pan.baidu.com/s/1ueKqh3lFAAgC-vVU34ChYA?pwd=qv5m)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k.pth)| [baidu](https://pan.baidu.com/s/1CsWmcPcwieMzXE8pVmHh7w?pwd=qd9n)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k_1kft_224.pth)|
56
  | RevCol-L<sup>\*</sup> | ImageNet-22K | 384x384 | 273M | 116G | 87.6 |[baidu](https://pan.baidu.com/s/1ueKqh3lFAAgC-vVU34ChYA?pwd=qv5m)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k.pth)| [baidu](https://pan.baidu.com/s/1VmCE3W3Xw6-Lo4rWrj9Xzg?pwd=x69r)/[github](https://github.com/megvii-research/RevCol/releases/download/checkpoint/revcol_large_22k_1kft_384.pth)|
57
+ | RevCol-H<sup>\*+</sup> | Megdata-168M | pretrain 224 / finetune 640 | 2.1B | 2537 | 90.0 |[huggingface](https://huggingface.co/LarryTsai/RevCol/blob/main/revcol_models/classification/revcol_huge_megdata.pth)|[huggingface](https://huggingface.co/LarryTsai/RevCol/blob/main/revcol_models/classification/revcol_huge_megdata_in1k.pth)|
58
 
59
+ [+]: Note that we use a slightly different model on RevCol-H with one more branch from the bottom level to the top one. Later experiments prove that this connection is unnecessary, however, consider RevCol-H's training cost, we do not retrain it.
60
  ## Getting Started
61
  Please refer to [INSTRUCTIONS.md](INSTRUCTIONS.md) for setting up, training and evaluation details.
62
 
 
84
  year={2023},
85
  url={https://openreview.net/forum?id=Oc2vlWU0jFY}
86
  }
87
+ ```