import torch from typing import Any, Iterable, List, Tuple, Callable import torch.distributed as dist def get_gpu_states(fwd_gpu_devices) -> Tuple[List[int], List[torch.Tensor]]: # This will not error out if "arg" is a CPU tensor or a non-tensor type because # the conditionals short-circuit. fwd_gpu_states = [] for device in fwd_gpu_devices: with torch.cuda.device(device): fwd_gpu_states.append(torch.cuda.get_rng_state()) return fwd_gpu_states def get_gpu_device(*args): fwd_gpu_devices = list(set(arg.get_device() for arg in args if isinstance(arg, torch.Tensor) and arg.is_cuda)) return fwd_gpu_devices def set_device_states(fwd_cpu_state, devices, states) -> None: torch.set_rng_state(fwd_cpu_state) for device, state in zip(devices, states): with torch.cuda.device(device): torch.cuda.set_rng_state(state) def detach_and_grad(inputs: Tuple[Any, ...]) -> Tuple[torch.Tensor, ...]: if isinstance(inputs, tuple): out = [] for inp in inputs: if not isinstance(inp, torch.Tensor): out.append(inp) continue x = inp.detach() x.requires_grad = True out.append(x) return tuple(out) else: raise RuntimeError( "Only tuple of tensors is supported. Got Unsupported input type: ", type(inputs).__name__) def get_cpu_and_gpu_states(gpu_devices): return torch.get_rng_state(), get_gpu_states(gpu_devices) class ReverseFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_functions, alpha, *args): l0, l1, l2, l3 = run_functions alpha0, alpha1, alpha2, alpha3 = alpha ctx.run_functions = run_functions ctx.alpha = alpha ctx.preserve_rng_state = True ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), "dtype": torch.get_autocast_gpu_dtype(), "cache_enabled": torch.is_autocast_cache_enabled()} ctx.cpu_autocast_kwargs = {"enabled": torch.is_autocast_cpu_enabled(), "dtype": torch.get_autocast_cpu_dtype(), "cache_enabled": torch.is_autocast_cache_enabled()} assert len(args) == 5 [x, c0, c1, c2, c3] = args if type(c0) == int: ctx.first_col = True else: ctx.first_col = False with torch.no_grad(): if ctx.preserve_rng_state: gpu_devices = get_gpu_device(*args) ctx.gpu_devices = gpu_devices ctx.cpu_states_0, ctx.gpu_states_0 = get_cpu_and_gpu_states(gpu_devices) c0 = l0(x, c1, c3) + c0*alpha0 ctx.cpu_states_1, ctx.gpu_states_1 = get_cpu_and_gpu_states(gpu_devices) c1 = l1(c0, c2) + c1*alpha1 ctx.cpu_states_2, ctx.gpu_states_2 = get_cpu_and_gpu_states(gpu_devices) c2 = l2(c1, c3) + c2*alpha2 ctx.cpu_states_3, ctx.gpu_states_3 = get_cpu_and_gpu_states(gpu_devices) c3 = l3(c2) + c3*alpha3 else: c0 = l0(x, c1, c3) + c0*alpha0 c1 = l1(c0, c2) + c1*alpha1 c2 = l2(c1, c3) + c2*alpha2 c3 = l3(c2) + c3*alpha3 ctx.save_for_backward(x, c0, c1, c2, c3) return x, c0, c1 ,c2, c3 @staticmethod def backward(ctx, *grad_outputs): x, c0, c1, c2, c3 = ctx.saved_tensors l0, l1, l2, l3 = ctx.run_functions alpha0, alpha1, alpha2, alpha3 = ctx.alpha gx_right, g0_right, g1_right, g2_right, g3_right = grad_outputs (x, c0, c1, c2, c3) = detach_and_grad((x, c0, c1, c2, c3)) if ctx.preserve_rng_state: with torch.enable_grad(), \ torch.random.fork_rng(devices=ctx.gpu_devices, enabled=ctx.preserve_rng_state), \ torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs), \ torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): g3_up = g3_right g3_left = g3_up*alpha3 ##shortcut set_device_states(ctx.cpu_states_3, ctx.gpu_devices, ctx.gpu_states_3) oup3 = l3(c2) torch.autograd.backward(oup3, g3_up, retain_graph=True) with torch.no_grad(): c3_left = (1/alpha3)*(c3 - oup3) ## feature reverse g2_up = g2_right+ c2.grad g2_left = g2_up*alpha2 ##shortcut (c3_left,) = detach_and_grad((c3_left,)) set_device_states(ctx.cpu_states_2, ctx.gpu_devices, ctx.gpu_states_2) oup2 = l2(c1, c3_left) torch.autograd.backward(oup2, g2_up, retain_graph=True) c3_left.requires_grad = False cout3 = c3_left*alpha3 ##alpha3 update torch.autograd.backward(cout3, g3_up) with torch.no_grad(): c2_left = (1/alpha2)*(c2 - oup2) ## feature reverse g3_left = g3_left + c3_left.grad if c3_left.grad is not None else g3_left g1_up = g1_right+c1.grad g1_left = g1_up*alpha1 ##shortcut (c2_left,) = detach_and_grad((c2_left,)) set_device_states(ctx.cpu_states_1, ctx.gpu_devices, ctx.gpu_states_1) oup1 = l1(c0, c2_left) torch.autograd.backward(oup1, g1_up, retain_graph=True) c2_left.requires_grad = False cout2 = c2_left*alpha2 ##alpha3 update torch.autograd.backward(cout2, g2_up) with torch.no_grad(): c1_left = (1/alpha1)*(c1 - oup1) ## feature reverse g0_up = g0_right + c0.grad g0_left = g0_up*alpha0 ##shortcut g2_left = g2_left + c2_left.grad if c2_left.grad is not None else g2_left ## Fusion (c1_left,c3_left) = detach_and_grad((c1_left,c3_left)) set_device_states(ctx.cpu_states_0, ctx.gpu_devices, ctx.gpu_states_0) oup0 = l0(x, c1_left, c3_left) torch.autograd.backward(oup0, g0_up, retain_graph=True) c1_left.requires_grad = False cout1 = c1_left*alpha1 ##alpha3 update torch.autograd.backward(cout1, g1_up) with torch.no_grad(): c0_left = (1/alpha0)*(c0 - oup0) ## feature reverse gx_up = x.grad ## Fusion g1_left = g1_left + c1_left.grad if c1_left.grad is not None else g1_left ## Fusion g3_left = g3_left + c3_left.grad if c3_left.grad is not None else g3_left ## Fusion c0_left.requires_grad = False cout0 = c0_left*alpha0 ##alpha3 update torch.autograd.backward(cout0, g0_up) else: with torch.enable_grad(): g3_up = g3_right g3_left = g3_up*alpha3 ##shortcut oup3 = l3(c2) torch.autograd.backward(oup3, g3_up, retain_graph=True) with torch.no_grad(): c3_left = (1/alpha3)*(c3 - oup3) ## feature reverse g2_up = g2_right+ c2.grad g2_left = g2_up*alpha2 ##shortcut (c3_left,) = detach_and_grad((c3_left,)) oup2 = l2(c1, c3_left) torch.autograd.backward(oup2, g2_up, retain_graph=True) c3_left.requires_grad = False cout3 = c3_left*alpha3 ##alpha3 update torch.autograd.backward(cout3, g3_up) with torch.no_grad(): c2_left = (1/alpha2)*(c2 - oup2) ## feature reverse g3_left = g3_left + c3_left.grad if c3_left.grad is not None else g3_left g1_up = g1_right+c1.grad g1_left = g1_up*alpha1 ##shortcut (c2_left,) = detach_and_grad((c2_left,)) oup1 = l1(c0, c2_left) torch.autograd.backward(oup1, g1_up, retain_graph=True) c2_left.requires_grad = False cout2 = c2_left*alpha2 ##alpha3 update torch.autograd.backward(cout2, g2_up) with torch.no_grad(): c1_left = (1/alpha1)*(c1 - oup1) ## feature reverse g0_up = g0_right + c0.grad g0_left = g0_up*alpha0 ##shortcut g2_left = g2_left + c2_left.grad if c2_left.grad is not None else g2_left ## Fusion (c1_left,c3_left) = detach_and_grad((c1_left,c3_left)) oup0 = l0(x, c1_left, c3_left) torch.autograd.backward(oup0, g0_up, retain_graph=True) c1_left.requires_grad = False cout1 = c1_left*alpha1 ##alpha3 update torch.autograd.backward(cout1, g1_up) with torch.no_grad(): c0_left = (1/alpha0)*(c0 - oup0) ## feature reverse gx_up = x.grad ## Fusion g1_left = g1_left + c1_left.grad if c1_left.grad is not None else g1_left ## Fusion g3_left = g3_left + c3_left.grad if c3_left.grad is not None else g3_left ## Fusion c0_left.requires_grad = False cout0 = c0_left*alpha0 ##alpha3 update torch.autograd.backward(cout0, g0_up) # if dist.get_rank()==0: # print(c0_left.mean().data) # print(f'c0: {c0_left.max()}, c1: {c1_left.max()}, c2: {c2_left.max()}, c3: {c3_left.max()}') # print(f'x.grad: {gx_up.mean()}, c0.grad: {g0_left.mean()}, c1.grad: {g1_left.mean()}, c2.grad: {g2_left.mean()}, c3.grad: {g3_left.mean()}') # import pdb;pdb.set_trace() if ctx.first_col: # print(f'c0: {c0_left.max()}, c1: {c1_left.max()}, c2: {c2_left.max()}, c3: {c3_left.max()}') return None, None, gx_up, None, None, None, None else: return None, None, gx_up, g0_left, g1_left, g2_left, g3_left