# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import re from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor from mmcv.runner import get_dist_info import numpy as np def cal_model_depth(depth, num_subnet): dp = np.zeros((depth, num_subnet)) dp[:,0]=np.linspace(0, depth-1, depth) dp[0,:]=np.linspace(0, num_subnet-1, num_subnet) for i in range(1, depth): for j in range(1, num_subnet): dp[i][j] = min(dp[i][j-1], dp[i-1][j])+1 dp = dp.astype(int) # col = [x for x in np.linspace(0, sum(self.layers)-1, sum(self.layers))] # dp = np.transpose(np.array([col]*self.num_subnet, dtype=int)) dp = dp+1 ## make layer id starts from 1 return dp def get_num_layer_layer_wise(n, layers, num_subnet=12): dp=cal_model_depth(sum(layers), num_subnet) # def get_layer_id(n, dp, layers): if n.startswith("backbone.subnet"): n=n[9:] name_part = n.split('.') subnet = int(name_part[0][6:]) if name_part[1].startswith("alpha"): id = dp[0][subnet] else: level = int(name_part[1][-1]) if name_part[2].startswith("blocks"): sub = int(name_part[3]) if sub>layers[level]-1: sub = layers[level]-1 block = sum(layers[:level])+sub if name_part[2].startswith("fusion"): block = sum(layers[:level]) id = dp[block][subnet] elif n.startswith("backbone.stem"): id = 0 else: id = dp[-1][-1]+1 return id @OPTIMIZER_BUILDERS.register_module() class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = cal_model_depth(sum(self.paramwise_cfg.get('layers')), self.paramwise_cfg.get('num_subnet'))[-1][-1]+2 # num_layers = self.paramwise_cfg.get('num_layers') + 2 decay_rate = self.paramwise_cfg.get('decay_rate') decay_type = self.paramwise_cfg.get('decay_type', "layer_wise") print("Build LearningRateDecayOptimizerConstructor %s %f - %d" % (decay_type, decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token') or re.match('(.*).alpha.$', name): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if decay_type == "layer_wise": layer_id = get_num_layer_layer_wise(name, self.paramwise_cfg.get('layers'), self.paramwise_cfg.get('num_subnet')) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_groups: scale = decay_rate ** (num_layers - layer_id - 1) parameter_groups[group_name] = { "weight_decay": this_weight_decay, "params": [], "param_names": [], "lr_scale": scale, "group_name": group_name, "lr": scale * self.base_lr, } parameter_groups[group_name]["params"].append(param) parameter_groups[group_name]["param_names"].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { "param_names": parameter_groups[key]["param_names"], "lr_scale": parameter_groups[key]["lr_scale"], "lr": parameter_groups[key]["lr"], "weight_decay": parameter_groups[key]["weight_decay"], } print("Param groups = %s" % json.dumps(to_display, indent=2)) params.extend(parameter_groups.values())