Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,98 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- KingNish/reasoning-base-20k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
base_model:
|
9 |
+
- Qwen/Qwen2.5-1.5B
|
10 |
+
---
|
11 |
+
|
12 |
+
## Uses
|
13 |
+
|
14 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
15 |
+
|
16 |
+
model_name = "/root/app/Reason/checkpoints"
|
17 |
+
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
torch_dtype="auto",
|
21 |
+
device_map="auto"
|
22 |
+
)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
|
25 |
+
from typing import List, Dict
|
26 |
+
def new_apply_chat_template(history:List[Dict[str, str]], add_reasoning_generation_prompt:bool=True, add_assistant_generation_prompt:bool=False):
|
27 |
+
if add_reasoning_generation_prompt:
|
28 |
+
return "".join([f"<|im_start|>{i['role']}\n{i['content']}<|im_end|>\n" for i in history]) + "<|im_start|><|reasoning|>\n"
|
29 |
+
if add_assistant_generation_prompt:
|
30 |
+
return "".join([f"<|im_start|>{i['role']}\n{i['content']}<|im_end|>\n" for i in history]) + "<|im_start|>assistant\n"
|
31 |
+
|
32 |
+
|
33 |
+
from IPython.display import Markdown, display
|
34 |
+
device = "cuda"
|
35 |
+
history = []
|
36 |
+
history.append({"role": "system", "content": "You are a helpful assistant"})
|
37 |
+
while True:
|
38 |
+
question = input('User:' + '\n')
|
39 |
+
print(question)
|
40 |
+
print('\n')
|
41 |
+
history.append({"role": "user", "content": question})
|
42 |
+
|
43 |
+
input_text = new_apply_chat_template(
|
44 |
+
history,
|
45 |
+
add_reasoning_generation_prompt=True
|
46 |
+
)
|
47 |
+
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
48 |
+
|
49 |
+
if model_inputs.input_ids.size()[1]>32000:
|
50 |
+
break
|
51 |
+
|
52 |
+
generated_ids = model.generate(
|
53 |
+
model_inputs.input_ids,
|
54 |
+
max_new_tokens=3000
|
55 |
+
)
|
56 |
+
|
57 |
+
if len(generated_ids)>32000:
|
58 |
+
break
|
59 |
+
|
60 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
|
61 |
+
|
62 |
+
reasoning_response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
63 |
+
history.append({"role": "<|reasoning|>", "content": reasoning_response})
|
64 |
+
print('reasoning:\n')
|
65 |
+
#print(response)
|
66 |
+
display(Markdown(reasoning_response))
|
67 |
+
print("------------")
|
68 |
+
print('\n')
|
69 |
+
|
70 |
+
input_text = new_apply_chat_template(
|
71 |
+
history,
|
72 |
+
add_assistant_generation_prompt=True
|
73 |
+
)
|
74 |
+
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
75 |
+
|
76 |
+
if model_inputs.input_ids.size()[1]>32000:
|
77 |
+
break
|
78 |
+
|
79 |
+
generated_ids = model.generate(
|
80 |
+
model_inputs.input_ids,
|
81 |
+
max_new_tokens=3000
|
82 |
+
)
|
83 |
+
|
84 |
+
if len(generated_ids)>32000:
|
85 |
+
break
|
86 |
+
|
87 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
|
88 |
+
|
89 |
+
assistant_response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
90 |
+
history.append({"role": "assistant", "content": assistant_response})
|
91 |
+
print('assistant:\n')
|
92 |
+
display(Markdown(assistant_response))
|
93 |
+
print("------------")
|
94 |
+
|
95 |
+
print("超过模型字数上线,已退出")
|
96 |
+
|
97 |
+
|
98 |
+
|