End of training
Browse files
README.md
CHANGED
@@ -1,3 +1,148 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: distilbert-base-multilingual-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: distilbert-base-multilingual-cased-fine-ptbr
|
11 |
+
results: []
|
12 |
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilbert-base-multilingual-cased-fine-ptbr
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7726
|
22 |
+
- Accuracy: EvaluationModule(name: "accuracy", module_type: "metric", features: {'predictions': Value(dtype='int32', id=None), 'references': Value(dtype='int32', id=None)}, usage: """
|
23 |
+
Args:
|
24 |
+
predictions (`list` of `int`): Predicted labels.
|
25 |
+
references (`list` of `int`): Ground truth labels.
|
26 |
+
normalize (`boolean`): If set to False, returns the number of correctly classified samples. Otherwise, returns the fraction of correctly classified samples. Defaults to True.
|
27 |
+
sample_weight (`list` of `float`): Sample weights Defaults to None.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
accuracy (`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy.
|
31 |
+
|
32 |
+
Examples:
|
33 |
+
|
34 |
+
Example 1-A simple example
|
35 |
+
>>> accuracy_metric = evaluate.load("accuracy")
|
36 |
+
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0])
|
37 |
+
>>> print(results)
|
38 |
+
{'accuracy': 0.5}
|
39 |
+
|
40 |
+
Example 2-The same as Example 1, except with `normalize` set to `False`.
|
41 |
+
>>> accuracy_metric = evaluate.load("accuracy")
|
42 |
+
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], normalize=False)
|
43 |
+
>>> print(results)
|
44 |
+
{'accuracy': 3.0}
|
45 |
+
|
46 |
+
Example 3-The same as Example 1, except with `sample_weight` set.
|
47 |
+
>>> accuracy_metric = evaluate.load("accuracy")
|
48 |
+
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4])
|
49 |
+
>>> print(results)
|
50 |
+
{'accuracy': 0.8778625954198473}
|
51 |
+
""", stored examples: 0)
|
52 |
+
- F1: EvaluationModule(name: "f1", module_type: "metric", features: {'predictions': Value(dtype='int32', id=None), 'references': Value(dtype='int32', id=None)}, usage: """
|
53 |
+
Args:
|
54 |
+
predictions (`list` of `int`): Predicted labels.
|
55 |
+
references (`list` of `int`): Ground truth labels.
|
56 |
+
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
|
57 |
+
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
|
58 |
+
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
|
59 |
+
|
60 |
+
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
|
61 |
+
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
|
62 |
+
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
|
63 |
+
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
|
64 |
+
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
|
65 |
+
sample_weight (`list` of `float`): Sample weights Defaults to None.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
|
69 |
+
|
70 |
+
Examples:
|
71 |
+
|
72 |
+
Example 1-A simple binary example
|
73 |
+
>>> f1_metric = evaluate.load("f1")
|
74 |
+
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
|
75 |
+
>>> print(results)
|
76 |
+
{'f1': 0.5}
|
77 |
+
|
78 |
+
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
|
79 |
+
>>> f1_metric = evaluate.load("f1")
|
80 |
+
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
|
81 |
+
>>> print(round(results['f1'], 2))
|
82 |
+
0.67
|
83 |
+
|
84 |
+
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
|
85 |
+
>>> f1_metric = evaluate.load("f1")
|
86 |
+
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
|
87 |
+
>>> print(round(results['f1'], 2))
|
88 |
+
0.35
|
89 |
+
|
90 |
+
Example 4-A multiclass example, with different values for the `average` input.
|
91 |
+
>>> predictions = [0, 2, 1, 0, 0, 1]
|
92 |
+
>>> references = [0, 1, 2, 0, 1, 2]
|
93 |
+
>>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")
|
94 |
+
>>> print(round(results['f1'], 2))
|
95 |
+
0.27
|
96 |
+
>>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")
|
97 |
+
>>> print(round(results['f1'], 2))
|
98 |
+
0.33
|
99 |
+
>>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")
|
100 |
+
>>> print(round(results['f1'], 2))
|
101 |
+
0.27
|
102 |
+
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
|
103 |
+
>>> print(results)
|
104 |
+
{'f1': array([0.8, 0. , 0. ])}
|
105 |
+
|
106 |
+
Example 5-A multi-label example
|
107 |
+
>>> f1_metric = evaluate.load("f1", "multilabel")
|
108 |
+
>>> results = f1_metric.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average="macro")
|
109 |
+
>>> print(round(results['f1'], 2))
|
110 |
+
0.67
|
111 |
+
""", stored examples: 0)
|
112 |
+
|
113 |
+
## Model description
|
114 |
+
|
115 |
+
More information needed
|
116 |
+
|
117 |
+
## Intended uses & limitations
|
118 |
+
|
119 |
+
More information needed
|
120 |
+
|
121 |
+
## Training and evaluation data
|
122 |
+
|
123 |
+
More information needed
|
124 |
+
|
125 |
+
## Training procedure
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- learning_rate: 2e-05
|
131 |
+
- train_batch_size: 16
|
132 |
+
- eval_batch_size: 16
|
133 |
+
- seed: 42
|
134 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
135 |
+
- lr_scheduler_type: linear
|
136 |
+
- lr_scheduler_warmup_steps: 500
|
137 |
+
- num_epochs: 3
|
138 |
+
|
139 |
+
### Training results
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
### Framework versions
|
144 |
+
|
145 |
+
- Transformers 4.37.1
|
146 |
+
- Pytorch 2.1.2+cu121
|
147 |
+
- Datasets 2.16.1
|
148 |
+
- Tokenizers 0.15.1
|