File size: 1,993 Bytes
284b079 3da2fb7 284b079 3da2fb7 284b079 d8bcdc0 284b079 3da2fb7 284b079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: swin-tiny-patch4-window7-224-finetunedo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetunedo
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3710
- Roc Auc: 0.8606
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Roc Auc |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 1.0 | 3 | 0.5066 | 0.7647 |
| No log | 2.0 | 6 | 0.4204 | 0.7941 |
| No log | 3.0 | 9 | 0.4298 | 0.7353 |
| 0.4868 | 4.0 | 12 | 0.4040 | 0.8018 |
| 0.4868 | 5.0 | 15 | 0.3925 | 0.7724 |
| 0.4868 | 6.0 | 18 | 0.3674 | 0.8235 |
| 0.4096 | 7.0 | 21 | 0.3673 | 0.8606 |
| 0.4096 | 8.0 | 24 | 0.3710 | 0.8606 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|