LemiSt commited on
Commit
b21ace7
1 Parent(s): e47f551

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +162 -196
README.md CHANGED
@@ -1,199 +1,165 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: LemiSt/SmolLM-135M-de
3
+ library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: SmolLM-135M-instruct-de
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: LemiSt/SmolLM-135M-de
22
+ model_type: LlamaForCausalLM
23
+ tokenizer_type: GPT2Tokenizer
24
+ load_in_8bit: false
25
+ load_in_4bit: true
26
+ strict: false
27
+ push_dataset_to_hub:
28
+ datasets:
29
+ - path: smollm_dataset.json
30
+ type: sharegpt
31
+ conversation: chatml
32
+ chat_template: chatml
33
+ default_system_prompt: "Du bist ein hilfreicher KI-Assistent."
34
+ dataset_prepared_path:
35
+ val_set_size: 0.05
36
+ adapter: qlora
37
+ lora_model_dir:
38
+ sequence_len: 2048
39
+ sample_packing: true
40
+ lora_r: 32
41
+ lora_alpha: 16
42
+ lora_dropout: 0.05
43
+ lora_target_modules:
44
+ lora_target_linear: true
45
+ lora_fan_in_fan_out:
46
+ wandb_project: smollm-135m-de-sft-qlora
47
+ wandb_entity:
48
+ wandb_watch:
49
+ wandb_name:
50
+ wandb_log_model:
51
+ output_dir: ./outputs/smollm-135m-sft-qlora-out
52
+ hub_model_id: LemiSt/SmolLM-135M-instruct-de
53
+ hub_strategy: end
54
+ gradient_accumulation_steps: 16
55
+ micro_batch_size: 2
56
+ num_epochs: 2
57
+ optimizer: adamw_bnb_8bit
58
+ torchdistx_path:
59
+ lr_scheduler: cosine
60
+ learning_rate: 0.003
61
+ train_on_inputs: false
62
+ group_by_length: false
63
+ bf16: true
64
+ fp16: false
65
+ tf32: false
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+ gptq_groupsize:
74
+ gptq_model_v1:
75
+ warmup_steps: 20
76
+ evals_per_epoch: 4
77
+ saves_per_epoch: 4
78
+ debug:
79
+ deepspeed:
80
+ weight_decay: 0.1
81
+ fsdp:
82
+ fsdp_config:
83
+ special_tokens:
84
+ bos_token: "<|endoftext|>"
85
+ eos_token: "<|endoftext|>"
86
+ unk_token: "<|endoftext|>"
87
+
88
+ ```
89
+
90
+ </details><br>
91
+
92
+ # SmolLM-135M-instruct-de
93
+
94
+ MERGED VERSION: [LemiSt/SmolLM-135M-instruct-de-merged](https://huggingface.co/LemiSt/SmolLM-135M-instruct-de-merged)
95
+
96
+ This model is a fine-tuned version of [LemiSt/SmolLM-135M-de](https://huggingface.co/LemiSt/SmolLM-135M-de) on an internal testing dataset with general chat examples.
97
+ It achieves the following results on the evaluation set:
98
+ - Loss: 0.7453
99
+
100
+ ## Model description
101
+
102
+ For more information, see the mode card of the [base model](https://huggingface.co/LemiSt/SmolLM-135M-de). This adapter was trained using qlora at rank 32 with alpha 16, applying a dataset of around 200k german chat samples for two epochs.
103
+
104
+ ## Intended uses & limitations
105
+
106
+ Mainly playing around with tiny chat models - while the output is generally intact German and the model somewhat follows instructions, it makes too many mistakes to be deployed in a real world setting.
107
+
108
+ ### Usage example
109
+ ```python
110
+ import torch
111
+ from transformers import AutoTokenizer, AutoModelForCausalLM
112
+ checkpoint = "LemiSt/SmolLM-135M-instruct-de"
113
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
114
+ device = "cuda" if torch.cuda.is_available() else "cpu"
115
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=device, torch_dtype=torch.bfloat16)
116
+ messages = [
117
+ {"role": "system", "content": "Du bist ein hilfreicher Assistent."},
118
+ {"role": "user", "content": "Wie viele Hände hat ein normaler Mensch?"}
119
+ ]
120
+ inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True).to(device)
121
+ outputs = model.generate(inputs, max_new_tokens=256, do_sample=True, temperature=0.3, top_p=0.9, repetition_penalty=1.2)
122
+ print(tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True))
123
+ ```
124
+ ## Training and evaluation data
125
+
126
+ Internal dataset which was compiled for another experiment.
127
+
128
+ ## Training procedure
129
+
130
+ ### Training hyperparameters
131
+
132
+ The following hyperparameters were used during training:
133
+ - learning_rate: 0.003
134
+ - train_batch_size: 2
135
+ - eval_batch_size: 2
136
+ - seed: 42
137
+ - gradient_accumulation_steps: 16
138
+ - total_train_batch_size: 32
139
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
140
+ - lr_scheduler_type: cosine
141
+ - lr_scheduler_warmup_steps: 20
142
+ - num_epochs: 2
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | 1.6406 | 0.0005 | 1 | 1.6172 |
149
+ | 0.8219 | 0.2497 | 501 | 0.8901 |
150
+ | 0.8646 | 0.4995 | 1002 | 0.8370 |
151
+ | 0.8651 | 0.7492 | 1503 | 0.8052 |
152
+ | 0.7231 | 0.9989 | 2004 | 0.7827 |
153
+ | 0.7632 | 1.2468 | 2505 | 0.7673 |
154
+ | 0.7543 | 1.4967 | 3006 | 0.7536 |
155
+ | 0.7782 | 1.7466 | 3507 | 0.7469 |
156
+ | 0.6724 | 1.9966 | 4008 | 0.7453 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.12.0
162
+ - Transformers 4.45.0.dev0
163
+ - Pytorch 2.3.1+cu121
164
+ - Datasets 2.21.0
165
+ - Tokenizers 0.19.1