Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,165 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
base_model: LemiSt/SmolLM-135M-de
|
3 |
+
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- axolotl
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: SmolLM-135M-instruct-de
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
17 |
+
<details><summary>See axolotl config</summary>
|
18 |
+
|
19 |
+
axolotl version: `0.4.1`
|
20 |
+
```yaml
|
21 |
+
base_model: LemiSt/SmolLM-135M-de
|
22 |
+
model_type: LlamaForCausalLM
|
23 |
+
tokenizer_type: GPT2Tokenizer
|
24 |
+
load_in_8bit: false
|
25 |
+
load_in_4bit: true
|
26 |
+
strict: false
|
27 |
+
push_dataset_to_hub:
|
28 |
+
datasets:
|
29 |
+
- path: smollm_dataset.json
|
30 |
+
type: sharegpt
|
31 |
+
conversation: chatml
|
32 |
+
chat_template: chatml
|
33 |
+
default_system_prompt: "Du bist ein hilfreicher KI-Assistent."
|
34 |
+
dataset_prepared_path:
|
35 |
+
val_set_size: 0.05
|
36 |
+
adapter: qlora
|
37 |
+
lora_model_dir:
|
38 |
+
sequence_len: 2048
|
39 |
+
sample_packing: true
|
40 |
+
lora_r: 32
|
41 |
+
lora_alpha: 16
|
42 |
+
lora_dropout: 0.05
|
43 |
+
lora_target_modules:
|
44 |
+
lora_target_linear: true
|
45 |
+
lora_fan_in_fan_out:
|
46 |
+
wandb_project: smollm-135m-de-sft-qlora
|
47 |
+
wandb_entity:
|
48 |
+
wandb_watch:
|
49 |
+
wandb_name:
|
50 |
+
wandb_log_model:
|
51 |
+
output_dir: ./outputs/smollm-135m-sft-qlora-out
|
52 |
+
hub_model_id: LemiSt/SmolLM-135M-instruct-de
|
53 |
+
hub_strategy: end
|
54 |
+
gradient_accumulation_steps: 16
|
55 |
+
micro_batch_size: 2
|
56 |
+
num_epochs: 2
|
57 |
+
optimizer: adamw_bnb_8bit
|
58 |
+
torchdistx_path:
|
59 |
+
lr_scheduler: cosine
|
60 |
+
learning_rate: 0.003
|
61 |
+
train_on_inputs: false
|
62 |
+
group_by_length: false
|
63 |
+
bf16: true
|
64 |
+
fp16: false
|
65 |
+
tf32: false
|
66 |
+
gradient_checkpointing: true
|
67 |
+
early_stopping_patience:
|
68 |
+
resume_from_checkpoint:
|
69 |
+
local_rank:
|
70 |
+
logging_steps: 1
|
71 |
+
xformers_attention:
|
72 |
+
flash_attention: true
|
73 |
+
gptq_groupsize:
|
74 |
+
gptq_model_v1:
|
75 |
+
warmup_steps: 20
|
76 |
+
evals_per_epoch: 4
|
77 |
+
saves_per_epoch: 4
|
78 |
+
debug:
|
79 |
+
deepspeed:
|
80 |
+
weight_decay: 0.1
|
81 |
+
fsdp:
|
82 |
+
fsdp_config:
|
83 |
+
special_tokens:
|
84 |
+
bos_token: "<|endoftext|>"
|
85 |
+
eos_token: "<|endoftext|>"
|
86 |
+
unk_token: "<|endoftext|>"
|
87 |
+
|
88 |
+
```
|
89 |
+
|
90 |
+
</details><br>
|
91 |
+
|
92 |
+
# SmolLM-135M-instruct-de
|
93 |
+
|
94 |
+
MERGED VERSION: [LemiSt/SmolLM-135M-instruct-de-merged](https://huggingface.co/LemiSt/SmolLM-135M-instruct-de-merged)
|
95 |
+
|
96 |
+
This model is a fine-tuned version of [LemiSt/SmolLM-135M-de](https://huggingface.co/LemiSt/SmolLM-135M-de) on an internal testing dataset with general chat examples.
|
97 |
+
It achieves the following results on the evaluation set:
|
98 |
+
- Loss: 0.7453
|
99 |
+
|
100 |
+
## Model description
|
101 |
+
|
102 |
+
For more information, see the mode card of the [base model](https://huggingface.co/LemiSt/SmolLM-135M-de). This adapter was trained using qlora at rank 32 with alpha 16, applying a dataset of around 200k german chat samples for two epochs.
|
103 |
+
|
104 |
+
## Intended uses & limitations
|
105 |
+
|
106 |
+
Mainly playing around with tiny chat models - while the output is generally intact German and the model somewhat follows instructions, it makes too many mistakes to be deployed in a real world setting.
|
107 |
+
|
108 |
+
### Usage example
|
109 |
+
```python
|
110 |
+
import torch
|
111 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
112 |
+
checkpoint = "LemiSt/SmolLM-135M-instruct-de"
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
114 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
115 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=device, torch_dtype=torch.bfloat16)
|
116 |
+
messages = [
|
117 |
+
{"role": "system", "content": "Du bist ein hilfreicher Assistent."},
|
118 |
+
{"role": "user", "content": "Wie viele Hände hat ein normaler Mensch?"}
|
119 |
+
]
|
120 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True).to(device)
|
121 |
+
outputs = model.generate(inputs, max_new_tokens=256, do_sample=True, temperature=0.3, top_p=0.9, repetition_penalty=1.2)
|
122 |
+
print(tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True))
|
123 |
+
```
|
124 |
+
## Training and evaluation data
|
125 |
+
|
126 |
+
Internal dataset which was compiled for another experiment.
|
127 |
+
|
128 |
+
## Training procedure
|
129 |
+
|
130 |
+
### Training hyperparameters
|
131 |
+
|
132 |
+
The following hyperparameters were used during training:
|
133 |
+
- learning_rate: 0.003
|
134 |
+
- train_batch_size: 2
|
135 |
+
- eval_batch_size: 2
|
136 |
+
- seed: 42
|
137 |
+
- gradient_accumulation_steps: 16
|
138 |
+
- total_train_batch_size: 32
|
139 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
140 |
+
- lr_scheduler_type: cosine
|
141 |
+
- lr_scheduler_warmup_steps: 20
|
142 |
+
- num_epochs: 2
|
143 |
+
|
144 |
+
### Training results
|
145 |
+
|
146 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
147 |
+
|:-------------:|:------:|:----:|:---------------:|
|
148 |
+
| 1.6406 | 0.0005 | 1 | 1.6172 |
|
149 |
+
| 0.8219 | 0.2497 | 501 | 0.8901 |
|
150 |
+
| 0.8646 | 0.4995 | 1002 | 0.8370 |
|
151 |
+
| 0.8651 | 0.7492 | 1503 | 0.8052 |
|
152 |
+
| 0.7231 | 0.9989 | 2004 | 0.7827 |
|
153 |
+
| 0.7632 | 1.2468 | 2505 | 0.7673 |
|
154 |
+
| 0.7543 | 1.4967 | 3006 | 0.7536 |
|
155 |
+
| 0.7782 | 1.7466 | 3507 | 0.7469 |
|
156 |
+
| 0.6724 | 1.9966 | 4008 | 0.7453 |
|
157 |
+
|
158 |
+
|
159 |
+
### Framework versions
|
160 |
+
|
161 |
+
- PEFT 0.12.0
|
162 |
+
- Transformers 4.45.0.dev0
|
163 |
+
- Pytorch 2.3.1+cu121
|
164 |
+
- Datasets 2.21.0
|
165 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|