LeoChiuu commited on
Commit
3a99645
1 Parent(s): b70955a

Add new SentenceTransformer model.

Browse files
Files changed (4) hide show
  1. README.md +556 -165
  2. config.json +1 -1
  3. config_sentence_transformers.json +2 -2
  4. model.safetensors +1 -1
README.md CHANGED
@@ -1,201 +1,592 @@
1
  ---
2
- datasets: custom-data
3
- language: en
4
- license: apache-2.0
5
- model_name: LeoChiuu/all-MiniLM-L6-v2-arc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for LeoChiuu/all-MiniLM-L6-v2-arc
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
 
 
 
 
 
 
 
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- Binary classification of sentences
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** en
27
- - **License:** apache-2.0
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** https://github.com/huggingface/huggingface_hub
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
 
 
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
 
 
 
 
 
 
47
 
48
- ### Downstream Use [optional]
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
53
 
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
 
60
- ## Bias, Risks, and Limitations
 
 
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
 
 
63
 
64
- [More Information Needed]
65
-
66
- ### Recommendations
 
 
67
 
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
69
 
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
 
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
 
80
- ### Training Data
 
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
 
84
- [More Information Needed]
85
 
86
- ### Training Procedure
 
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
 
196
 
197
- [More Information Needed]
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
 
1
  ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:560
49
+ - loss:CoSENTLoss
50
+ widget:
51
+ - source_sentence: Let's search inside
52
+ sentences:
53
+ - Stuffed animal
54
+ - Let's look inside
55
+ - What is worse?
56
+ - source_sentence: I want a torch
57
+ sentences:
58
+ - What do you think of Spike
59
+ - Actually I want a torch
60
+ - Why candle?
61
+ - source_sentence: Magic trace
62
+ sentences:
63
+ - A sword.
64
+ - ' Why is he so tiny?'
65
+ - 'The flower is changed into flower. '
66
+ - source_sentence: Did you use illusion?
67
+ sentences:
68
+ - Do you use illusion?
69
+ - You are a cat?
70
+ - It's Toby
71
+ - source_sentence: Do you see your scarf in the watering can?
72
+ sentences:
73
+ - What is the Weeping Tree?
74
+ - Are these your footprints?
75
+ - Magic user
76
+ model-index:
77
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
78
+ results:
79
+ - task:
80
+ type: binary-classification
81
+ name: Binary Classification
82
+ dataset:
83
+ name: custom arc semantics data
84
+ type: custom-arc-semantics-data
85
+ metrics:
86
+ - type: cosine_accuracy
87
+ value: 0.9285714285714286
88
+ name: Cosine Accuracy
89
+ - type: cosine_accuracy_threshold
90
+ value: 0.42927420139312744
91
+ name: Cosine Accuracy Threshold
92
+ - type: cosine_f1
93
+ value: 0.9425287356321839
94
+ name: Cosine F1
95
+ - type: cosine_f1_threshold
96
+ value: 0.2269928753376007
97
+ name: Cosine F1 Threshold
98
+ - type: cosine_precision
99
+ value: 0.9111111111111111
100
+ name: Cosine Precision
101
+ - type: cosine_recall
102
+ value: 0.9761904761904762
103
+ name: Cosine Recall
104
+ - type: cosine_ap
105
+ value: 0.9720863676601571
106
+ name: Cosine Ap
107
+ - type: dot_accuracy
108
+ value: 0.9285714285714286
109
+ name: Dot Accuracy
110
+ - type: dot_accuracy_threshold
111
+ value: 0.42927438020706177
112
+ name: Dot Accuracy Threshold
113
+ - type: dot_f1
114
+ value: 0.9425287356321839
115
+ name: Dot F1
116
+ - type: dot_f1_threshold
117
+ value: 0.22699296474456787
118
+ name: Dot F1 Threshold
119
+ - type: dot_precision
120
+ value: 0.9111111111111111
121
+ name: Dot Precision
122
+ - type: dot_recall
123
+ value: 0.9761904761904762
124
+ name: Dot Recall
125
+ - type: dot_ap
126
+ value: 0.9720863676601571
127
+ name: Dot Ap
128
+ - type: manhattan_accuracy
129
+ value: 0.9285714285714286
130
+ name: Manhattan Accuracy
131
+ - type: manhattan_accuracy_threshold
132
+ value: 16.630834579467773
133
+ name: Manhattan Accuracy Threshold
134
+ - type: manhattan_f1
135
+ value: 0.9431818181818182
136
+ name: Manhattan F1
137
+ - type: manhattan_f1_threshold
138
+ value: 19.740108489990234
139
+ name: Manhattan F1 Threshold
140
+ - type: manhattan_precision
141
+ value: 0.9021739130434783
142
+ name: Manhattan Precision
143
+ - type: manhattan_recall
144
+ value: 0.9880952380952381
145
+ name: Manhattan Recall
146
+ - type: manhattan_ap
147
+ value: 0.9728353486982702
148
+ name: Manhattan Ap
149
+ - type: euclidean_accuracy
150
+ value: 0.9285714285714286
151
+ name: Euclidean Accuracy
152
+ - type: euclidean_accuracy_threshold
153
+ value: 1.068155288696289
154
+ name: Euclidean Accuracy Threshold
155
+ - type: euclidean_f1
156
+ value: 0.9425287356321839
157
+ name: Euclidean F1
158
+ - type: euclidean_f1_threshold
159
+ value: 1.2433418035507202
160
+ name: Euclidean F1 Threshold
161
+ - type: euclidean_precision
162
+ value: 0.9111111111111111
163
+ name: Euclidean Precision
164
+ - type: euclidean_recall
165
+ value: 0.9761904761904762
166
+ name: Euclidean Recall
167
+ - type: euclidean_ap
168
+ value: 0.9720863676601571
169
+ name: Euclidean Ap
170
+ - type: max_accuracy
171
+ value: 0.9285714285714286
172
+ name: Max Accuracy
173
+ - type: max_accuracy_threshold
174
+ value: 16.630834579467773
175
+ name: Max Accuracy Threshold
176
+ - type: max_f1
177
+ value: 0.9431818181818182
178
+ name: Max F1
179
+ - type: max_f1_threshold
180
+ value: 19.740108489990234
181
+ name: Max F1 Threshold
182
+ - type: max_precision
183
+ value: 0.9111111111111111
184
+ name: Max Precision
185
+ - type: max_recall
186
+ value: 0.9880952380952381
187
+ name: Max Recall
188
+ - type: max_ap
189
+ value: 0.9728353486982702
190
+ name: Max Ap
191
  ---
192
 
193
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
 
 
 
194
 
195
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
196
 
197
  ## Model Details
198
 
199
  ### Model Description
200
+ - **Model Type:** Sentence Transformer
201
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
202
+ - **Maximum Sequence Length:** 256 tokens
203
+ - **Output Dimensionality:** 384 tokens
204
+ - **Similarity Function:** Cosine Similarity
205
+ <!-- - **Training Dataset:** Unknown -->
206
+ <!-- - **Language:** Unknown -->
207
+ <!-- - **License:** Unknown -->
208
 
209
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
211
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
212
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
213
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
214
 
215
+ ### Full Model Architecture
216
 
217
+ ```
218
+ SentenceTransformer(
219
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
220
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
221
+ (2): Normalize()
222
+ )
223
+ ```
224
 
225
+ ## Usage
226
 
227
+ ### Direct Usage (Sentence Transformers)
228
 
229
+ First install the Sentence Transformers library:
230
 
231
+ ```bash
232
+ pip install -U sentence-transformers
233
+ ```
 
 
234
 
235
+ Then you can load this model and run inference.
236
+ ```python
237
+ from sentence_transformers import SentenceTransformer
238
 
239
+ # Download from the 🤗 Hub
240
+ model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc")
241
+ # Run inference
242
+ sentences = [
243
+ 'Do you see your scarf in the watering can?',
244
+ 'Are these your footprints?',
245
+ 'Magic user',
246
+ ]
247
+ embeddings = model.encode(sentences)
248
+ print(embeddings.shape)
249
+ # [3, 384]
250
 
251
+ # Get the similarity scores for the embeddings
252
+ similarities = model.similarity(embeddings, embeddings)
253
+ print(similarities.shape)
254
+ # [3, 3]
255
+ ```
256
 
257
+ <!--
258
+ ### Direct Usage (Transformers)
259
 
260
+ <details><summary>Click to see the direct usage in Transformers</summary>
261
 
262
+ </details>
263
+ -->
 
 
 
 
 
264
 
265
+ <!--
266
+ ### Downstream Usage (Sentence Transformers)
267
 
268
+ You can finetune this model on your own dataset.
269
 
270
+ <details><summary>Click to expand</summary>
271
 
272
+ </details>
273
+ -->
274
 
275
+ <!--
276
+ ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
 
 
 
277
 
278
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
279
+ -->
280
 
281
  ## Evaluation
282
 
283
+ ### Metrics
284
+
285
+ #### Binary Classification
286
+ * Dataset: `custom-arc-semantics-data`
287
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
288
+
289
+ | Metric | Value |
290
+ |:-----------------------------|:-----------|
291
+ | cosine_accuracy | 0.9286 |
292
+ | cosine_accuracy_threshold | 0.4293 |
293
+ | cosine_f1 | 0.9425 |
294
+ | cosine_f1_threshold | 0.227 |
295
+ | cosine_precision | 0.9111 |
296
+ | cosine_recall | 0.9762 |
297
+ | cosine_ap | 0.9721 |
298
+ | dot_accuracy | 0.9286 |
299
+ | dot_accuracy_threshold | 0.4293 |
300
+ | dot_f1 | 0.9425 |
301
+ | dot_f1_threshold | 0.227 |
302
+ | dot_precision | 0.9111 |
303
+ | dot_recall | 0.9762 |
304
+ | dot_ap | 0.9721 |
305
+ | manhattan_accuracy | 0.9286 |
306
+ | manhattan_accuracy_threshold | 16.6308 |
307
+ | manhattan_f1 | 0.9432 |
308
+ | manhattan_f1_threshold | 19.7401 |
309
+ | manhattan_precision | 0.9022 |
310
+ | manhattan_recall | 0.9881 |
311
+ | manhattan_ap | 0.9728 |
312
+ | euclidean_accuracy | 0.9286 |
313
+ | euclidean_accuracy_threshold | 1.0682 |
314
+ | euclidean_f1 | 0.9425 |
315
+ | euclidean_f1_threshold | 1.2433 |
316
+ | euclidean_precision | 0.9111 |
317
+ | euclidean_recall | 0.9762 |
318
+ | euclidean_ap | 0.9721 |
319
+ | max_accuracy | 0.9286 |
320
+ | max_accuracy_threshold | 16.6308 |
321
+ | max_f1 | 0.9432 |
322
+ | max_f1_threshold | 19.7401 |
323
+ | max_precision | 0.9111 |
324
+ | max_recall | 0.9881 |
325
+ | **max_ap** | **0.9728** |
326
+
327
+ <!--
328
+ ## Bias, Risks and Limitations
329
+
330
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
331
+ -->
332
+
333
+ <!--
334
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
 
336
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
337
+ -->
338
 
339
+ ## Training Details
340
 
341
+ ### Training Dataset
342
+
343
+ #### Unnamed Dataset
344
+
345
+
346
+ * Size: 560 training samples
347
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
348
+ * Approximate statistics based on the first 1000 samples:
349
+ | | text1 | text2 | label |
350
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
351
+ | type | string | string | int |
352
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.2 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.26 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~36.07%</li><li>1: ~63.93%</li></ul> |
353
+ * Samples:
354
+ | text1 | text2 | label |
355
+ |:-----------------------------------------------------|:--------------------------------------------------------------------------|:---------------|
356
+ | <code>When it was dinner</code> | <code>Dinner time</code> | <code>1</code> |
357
+ | <code>Did you cook chicken noodle last night?</code> | <code>Did you make chicken noodle for dinner?</code> | <code>1</code> |
358
+ | <code>Someone who can change item</code> | <code>Someone who uses magic that turns something into something. </code> | <code>1</code> |
359
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
360
+ ```json
361
+ {
362
+ "scale": 20.0,
363
+ "similarity_fct": "pairwise_cos_sim"
364
+ }
365
+ ```
366
+
367
+ ### Evaluation Dataset
368
+
369
+ #### Unnamed Dataset
370
+
371
+
372
+ * Size: 140 evaluation samples
373
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
374
+ * Approximate statistics based on the first 1000 samples:
375
+ | | text1 | text2 | label |
376
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
377
+ | type | string | string | int |
378
+ | details | <ul><li>min: 3 tokens</li><li>mean: 6.99 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.29 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~40.00%</li><li>1: ~60.00%</li></ul> |
379
+ * Samples:
380
+ | text1 | text2 | label |
381
+ |:-----------------------------------------|:-----------------------------------------|:---------------|
382
+ | <code>Let's check inside</code> | <code>Let's search inside</code> | <code>1</code> |
383
+ | <code>Sohpie, are you okay?</code> | <code>Sophie Are you pressured?</code> | <code>0</code> |
384
+ | <code>This wine glass is related.</code> | <code>This sword looks important.</code> | <code>0</code> |
385
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
386
+ ```json
387
+ {
388
+ "scale": 20.0,
389
+ "similarity_fct": "pairwise_cos_sim"
390
+ }
391
+ ```
392
+
393
+ ### Training Hyperparameters
394
+ #### Non-Default Hyperparameters
395
+
396
+ - `eval_strategy`: epoch
397
+ - `learning_rate`: 2e-05
398
+ - `num_train_epochs`: 13
399
+ - `warmup_ratio`: 0.1
400
+ - `fp16`: True
401
+ - `batch_sampler`: no_duplicates
402
+
403
+ #### All Hyperparameters
404
+ <details><summary>Click to expand</summary>
405
+
406
+ - `overwrite_output_dir`: False
407
+ - `do_predict`: False
408
+ - `eval_strategy`: epoch
409
+ - `prediction_loss_only`: True
410
+ - `per_device_train_batch_size`: 8
411
+ - `per_device_eval_batch_size`: 8
412
+ - `per_gpu_train_batch_size`: None
413
+ - `per_gpu_eval_batch_size`: None
414
+ - `gradient_accumulation_steps`: 1
415
+ - `eval_accumulation_steps`: None
416
+ - `torch_empty_cache_steps`: None
417
+ - `learning_rate`: 2e-05
418
+ - `weight_decay`: 0.0
419
+ - `adam_beta1`: 0.9
420
+ - `adam_beta2`: 0.999
421
+ - `adam_epsilon`: 1e-08
422
+ - `max_grad_norm`: 1.0
423
+ - `num_train_epochs`: 13
424
+ - `max_steps`: -1
425
+ - `lr_scheduler_type`: linear
426
+ - `lr_scheduler_kwargs`: {}
427
+ - `warmup_ratio`: 0.1
428
+ - `warmup_steps`: 0
429
+ - `log_level`: passive
430
+ - `log_level_replica`: warning
431
+ - `log_on_each_node`: True
432
+ - `logging_nan_inf_filter`: True
433
+ - `save_safetensors`: True
434
+ - `save_on_each_node`: False
435
+ - `save_only_model`: False
436
+ - `restore_callback_states_from_checkpoint`: False
437
+ - `no_cuda`: False
438
+ - `use_cpu`: False
439
+ - `use_mps_device`: False
440
+ - `seed`: 42
441
+ - `data_seed`: None
442
+ - `jit_mode_eval`: False
443
+ - `use_ipex`: False
444
+ - `bf16`: False
445
+ - `fp16`: True
446
+ - `fp16_opt_level`: O1
447
+ - `half_precision_backend`: auto
448
+ - `bf16_full_eval`: False
449
+ - `fp16_full_eval`: False
450
+ - `tf32`: None
451
+ - `local_rank`: 0
452
+ - `ddp_backend`: None
453
+ - `tpu_num_cores`: None
454
+ - `tpu_metrics_debug`: False
455
+ - `debug`: []
456
+ - `dataloader_drop_last`: False
457
+ - `dataloader_num_workers`: 0
458
+ - `dataloader_prefetch_factor`: None
459
+ - `past_index`: -1
460
+ - `disable_tqdm`: False
461
+ - `remove_unused_columns`: True
462
+ - `label_names`: None
463
+ - `load_best_model_at_end`: False
464
+ - `ignore_data_skip`: False
465
+ - `fsdp`: []
466
+ - `fsdp_min_num_params`: 0
467
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
468
+ - `fsdp_transformer_layer_cls_to_wrap`: None
469
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
470
+ - `deepspeed`: None
471
+ - `label_smoothing_factor`: 0.0
472
+ - `optim`: adamw_torch
473
+ - `optim_args`: None
474
+ - `adafactor`: False
475
+ - `group_by_length`: False
476
+ - `length_column_name`: length
477
+ - `ddp_find_unused_parameters`: None
478
+ - `ddp_bucket_cap_mb`: None
479
+ - `ddp_broadcast_buffers`: False
480
+ - `dataloader_pin_memory`: True
481
+ - `dataloader_persistent_workers`: False
482
+ - `skip_memory_metrics`: True
483
+ - `use_legacy_prediction_loop`: False
484
+ - `push_to_hub`: False
485
+ - `resume_from_checkpoint`: None
486
+ - `hub_model_id`: None
487
+ - `hub_strategy`: every_save
488
+ - `hub_private_repo`: False
489
+ - `hub_always_push`: False
490
+ - `gradient_checkpointing`: False
491
+ - `gradient_checkpointing_kwargs`: None
492
+ - `include_inputs_for_metrics`: False
493
+ - `eval_do_concat_batches`: True
494
+ - `fp16_backend`: auto
495
+ - `push_to_hub_model_id`: None
496
+ - `push_to_hub_organization`: None
497
+ - `mp_parameters`:
498
+ - `auto_find_batch_size`: False
499
+ - `full_determinism`: False
500
+ - `torchdynamo`: None
501
+ - `ray_scope`: last
502
+ - `ddp_timeout`: 1800
503
+ - `torch_compile`: False
504
+ - `torch_compile_backend`: None
505
+ - `torch_compile_mode`: None
506
+ - `dispatch_batches`: None
507
+ - `split_batches`: None
508
+ - `include_tokens_per_second`: False
509
+ - `include_num_input_tokens_seen`: False
510
+ - `neftune_noise_alpha`: None
511
+ - `optim_target_modules`: None
512
+ - `batch_eval_metrics`: False
513
+ - `eval_on_start`: False
514
+ - `eval_use_gather_object`: False
515
+ - `batch_sampler`: no_duplicates
516
+ - `multi_dataset_batch_sampler`: proportional
517
+
518
+ </details>
519
+
520
+ ### Training Logs
521
+ | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
522
+ |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
523
+ | None | 0 | - | - | 0.9254 |
524
+ | 1.0 | 70 | 2.9684 | 1.4087 | 0.9425 |
525
+ | 2.0 | 140 | 1.4461 | 1.0942 | 0.9629 |
526
+ | 3.0 | 210 | 0.6005 | 0.8398 | 0.9680 |
527
+ | 4.0 | 280 | 0.3021 | 0.7577 | 0.9703 |
528
+ | 5.0 | 350 | 0.2412 | 0.7216 | 0.9715 |
529
+ | 6.0 | 420 | 0.1816 | 0.7538 | 0.9722 |
530
+ | 7.0 | 490 | 0.1512 | 0.8049 | 0.9726 |
531
+ | 8.0 | 560 | 0.1208 | 0.7602 | 0.9726 |
532
+ | 9.0 | 630 | 0.0915 | 0.7286 | 0.9729 |
533
+ | 10.0 | 700 | 0.0553 | 0.7072 | 0.9729 |
534
+ | 11.0 | 770 | 0.0716 | 0.6984 | 0.9730 |
535
+ | 12.0 | 840 | 0.0297 | 0.7063 | 0.9725 |
536
+ | 13.0 | 910 | 0.0462 | 0.6997 | 0.9728 |
537
+
538
+
539
+ ### Framework Versions
540
+ - Python: 3.10.14
541
+ - Sentence Transformers: 3.0.1
542
+ - Transformers: 4.44.2
543
+ - PyTorch: 2.4.1+cu121
544
+ - Accelerate: 0.34.2
545
+ - Datasets: 2.20.0
546
+ - Tokenizers: 0.19.1
547
+
548
+ ## Citation
549
+
550
+ ### BibTeX
551
+
552
+ #### Sentence Transformers
553
+ ```bibtex
554
+ @inproceedings{reimers-2019-sentence-bert,
555
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
556
+ author = "Reimers, Nils and Gurevych, Iryna",
557
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
558
+ month = "11",
559
+ year = "2019",
560
+ publisher = "Association for Computational Linguistics",
561
+ url = "https://arxiv.org/abs/1908.10084",
562
+ }
563
+ ```
564
+
565
+ #### CoSENTLoss
566
+ ```bibtex
567
+ @online{kexuefm-8847,
568
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
569
+ author={Su Jianlin},
570
+ year={2022},
571
+ month={Jan},
572
+ url={https://kexue.fm/archives/8847},
573
+ }
574
+ ```
575
+
576
+ <!--
577
+ ## Glossary
578
+
579
+ *Clearly define terms in order to be accessible across audiences.*
580
+ -->
581
+
582
+ <!--
583
+ ## Model Card Authors
584
+
585
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
586
+ -->
587
+
588
+ <!--
589
  ## Model Card Contact
590
 
591
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
592
+ -->
config.json CHANGED
@@ -19,7 +19,7 @@
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
22
- "transformers_version": "4.44.0",
23
  "type_vocab_size": 2,
24
  "use_cache": true,
25
  "vocab_size": 30522
 
19
  "pad_token_id": 0,
20
  "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
  "type_vocab_size": 2,
24
  "use_cache": true,
25
  "vocab_size": 30522
config_sentence_transformers.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "__version__": {
3
  "sentence_transformers": "3.0.1",
4
- "transformers": "4.44.0",
5
- "pytorch": "2.4.0+cu121"
6
  },
7
  "prompts": {},
8
  "default_prompt_name": null,
 
1
  {
2
  "__version__": {
3
  "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
  },
7
  "prompts": {},
8
  "default_prompt_name": null,
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a6cc633b22dd645d5916470915970b032282a71c48bdd15a97c49a86bb8bc83b
3
  size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d9ab6b7472780e4b9271e02f535d125c33cef1b145ab2f8d3135ed97c72aea5
3
  size 90864192