LeoChiuu commited on
Commit
ebb2033
1 Parent(s): 38af483

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +556 -165
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,201 +1,592 @@
1
  ---
2
- datasets: custom-data
3
- language: en
4
- license: apache-2.0
5
- model_name: LeoChiuu/sbert-base-ja
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for LeoChiuu/sbert-base-ja
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
 
 
 
 
 
 
 
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- Binary classification of sentences
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** en
27
- - **License:** apache-2.0
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** https://github.com/huggingface/huggingface_hub
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
 
 
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
 
 
 
 
 
47
 
48
- ### Downstream Use [optional]
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
53
 
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
 
60
- ## Bias, Risks, and Limitations
 
 
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
 
 
63
 
64
- [More Information Needed]
65
-
66
- ### Recommendations
 
 
67
 
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
69
 
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
 
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
 
80
- ### Training Data
 
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
 
84
- [More Information Needed]
85
 
86
- ### Training Procedure
 
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
 
196
 
197
- [More Information Needed]
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
 
1
  ---
2
+ base_model: colorfulscoop/sbert-base-ja
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:124
49
+ - loss:MultipleNegativesRankingLoss
50
+ widget:
51
+ - source_sentence: なにも要らない
52
+ sentences:
53
+ - 欲しくない
54
+ - 暖炉を調べよう
55
+ - キャンドルがいいな
56
+ - source_sentence: 試すため
57
+ sentences:
58
+ - 誰にもらったやつ?
59
+ - スカーフはナイトスタンドにある?
60
+ - ためすため
61
+ - source_sentence: ビーフシチュー作った?
62
+ sentences:
63
+ - 昨日作ったのはビーフシチュー?
64
+ - キャンドル要らない
65
+ - 昨日夕飯にビーフシチュー食べた?
66
+ - source_sentence: あれってキミのスカーフ?
67
+ sentences:
68
+ - あの木の上にあるやつはなに?
69
+ - あれってレオのスカーフ?
70
+ - どっちをさがせばいい?
71
+ - source_sentence: どっちも欲しくない
72
+ sentences:
73
+ - 気にスカーフがひっかかってる
74
+ - 花壇を調べよう
75
+ - タイマツ要らない
76
+ model-index:
77
+ - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
78
+ results:
79
+ - task:
80
+ type: binary-classification
81
+ name: Binary Classification
82
+ dataset:
83
+ name: custom arc semantics data
84
+ type: custom-arc-semantics-data
85
+ metrics:
86
+ - type: cosine_accuracy
87
+ value: 0.967741935483871
88
+ name: Cosine Accuracy
89
+ - type: cosine_accuracy_threshold
90
+ value: 0.2947738766670227
91
+ name: Cosine Accuracy Threshold
92
+ - type: cosine_f1
93
+ value: 0.9836065573770492
94
+ name: Cosine F1
95
+ - type: cosine_f1_threshold
96
+ value: 0.2947738766670227
97
+ name: Cosine F1 Threshold
98
+ - type: cosine_precision
99
+ value: 1.0
100
+ name: Cosine Precision
101
+ - type: cosine_recall
102
+ value: 0.967741935483871
103
+ name: Cosine Recall
104
+ - type: cosine_ap
105
+ value: 0.9999999999999998
106
+ name: Cosine Ap
107
+ - type: dot_accuracy
108
+ value: 0.967741935483871
109
+ name: Dot Accuracy
110
+ - type: dot_accuracy_threshold
111
+ value: 144.98019409179688
112
+ name: Dot Accuracy Threshold
113
+ - type: dot_f1
114
+ value: 0.9836065573770492
115
+ name: Dot F1
116
+ - type: dot_f1_threshold
117
+ value: 144.98019409179688
118
+ name: Dot F1 Threshold
119
+ - type: dot_precision
120
+ value: 1.0
121
+ name: Dot Precision
122
+ - type: dot_recall
123
+ value: 0.967741935483871
124
+ name: Dot Recall
125
+ - type: dot_ap
126
+ value: 0.9999999999999998
127
+ name: Dot Ap
128
+ - type: manhattan_accuracy
129
+ value: 0.967741935483871
130
+ name: Manhattan Accuracy
131
+ - type: manhattan_accuracy_threshold
132
+ value: 585.5504150390625
133
+ name: Manhattan Accuracy Threshold
134
+ - type: manhattan_f1
135
+ value: 0.9836065573770492
136
+ name: Manhattan F1
137
+ - type: manhattan_f1_threshold
138
+ value: 585.5504150390625
139
+ name: Manhattan F1 Threshold
140
+ - type: manhattan_precision
141
+ value: 1.0
142
+ name: Manhattan Precision
143
+ - type: manhattan_recall
144
+ value: 0.967741935483871
145
+ name: Manhattan Recall
146
+ - type: manhattan_ap
147
+ value: 0.9999999999999998
148
+ name: Manhattan Ap
149
+ - type: euclidean_accuracy
150
+ value: 0.967741935483871
151
+ name: Euclidean Accuracy
152
+ - type: euclidean_accuracy_threshold
153
+ value: 26.343276977539062
154
+ name: Euclidean Accuracy Threshold
155
+ - type: euclidean_f1
156
+ value: 0.9836065573770492
157
+ name: Euclidean F1
158
+ - type: euclidean_f1_threshold
159
+ value: 26.343276977539062
160
+ name: Euclidean F1 Threshold
161
+ - type: euclidean_precision
162
+ value: 1.0
163
+ name: Euclidean Precision
164
+ - type: euclidean_recall
165
+ value: 0.967741935483871
166
+ name: Euclidean Recall
167
+ - type: euclidean_ap
168
+ value: 0.9999999999999998
169
+ name: Euclidean Ap
170
+ - type: max_accuracy
171
+ value: 0.967741935483871
172
+ name: Max Accuracy
173
+ - type: max_accuracy_threshold
174
+ value: 585.5504150390625
175
+ name: Max Accuracy Threshold
176
+ - type: max_f1
177
+ value: 0.9836065573770492
178
+ name: Max F1
179
+ - type: max_f1_threshold
180
+ value: 585.5504150390625
181
+ name: Max F1 Threshold
182
+ - type: max_precision
183
+ value: 1.0
184
+ name: Max Precision
185
+ - type: max_recall
186
+ value: 0.967741935483871
187
+ name: Max Recall
188
+ - type: max_ap
189
+ value: 0.9999999999999998
190
+ name: Max Ap
191
  ---
192
 
193
+ # SentenceTransformer based on colorfulscoop/sbert-base-ja
 
 
 
194
 
195
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
196
 
197
  ## Model Details
198
 
199
  ### Model Description
200
+ - **Model Type:** Sentence Transformer
201
+ - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
202
+ - **Maximum Sequence Length:** 512 tokens
203
+ - **Output Dimensionality:** 768 tokens
204
+ - **Similarity Function:** Cosine Similarity
205
+ <!-- - **Training Dataset:** Unknown -->
206
+ <!-- - **Language:** Unknown -->
207
+ <!-- - **License:** Unknown -->
208
 
209
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
211
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
212
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
213
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
214
 
215
+ ### Full Model Architecture
216
 
217
+ ```
218
+ SentenceTransformer(
219
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
220
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
221
+ )
222
+ ```
223
 
224
+ ## Usage
225
 
226
+ ### Direct Usage (Sentence Transformers)
227
 
228
+ First install the Sentence Transformers library:
229
 
230
+ ```bash
231
+ pip install -U sentence-transformers
232
+ ```
 
 
233
 
234
+ Then you can load this model and run inference.
235
+ ```python
236
+ from sentence_transformers import SentenceTransformer
237
 
238
+ # Download from the 🤗 Hub
239
+ model = SentenceTransformer("LeoChiuu/sbert-base-ja")
240
+ # Run inference
241
+ sentences = [
242
+ 'どっちも欲しくない',
243
+ 'タイマツ要らない',
244
+ '花壇を調べよう',
245
+ ]
246
+ embeddings = model.encode(sentences)
247
+ print(embeddings.shape)
248
+ # [3, 768]
249
 
250
+ # Get the similarity scores for the embeddings
251
+ similarities = model.similarity(embeddings, embeddings)
252
+ print(similarities.shape)
253
+ # [3, 3]
254
+ ```
255
 
256
+ <!--
257
+ ### Direct Usage (Transformers)
258
 
259
+ <details><summary>Click to see the direct usage in Transformers</summary>
260
 
261
+ </details>
262
+ -->
 
 
 
 
 
263
 
264
+ <!--
265
+ ### Downstream Usage (Sentence Transformers)
266
 
267
+ You can finetune this model on your own dataset.
268
 
269
+ <details><summary>Click to expand</summary>
270
 
271
+ </details>
272
+ -->
273
 
274
+ <!--
275
+ ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
 
 
 
276
 
277
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
278
+ -->
279
 
280
  ## Evaluation
281
 
282
+ ### Metrics
283
+
284
+ #### Binary Classification
285
+ * Dataset: `custom-arc-semantics-data`
286
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
287
+
288
+ | Metric | Value |
289
+ |:-----------------------------|:---------|
290
+ | cosine_accuracy | 0.9677 |
291
+ | cosine_accuracy_threshold | 0.2948 |
292
+ | cosine_f1 | 0.9836 |
293
+ | cosine_f1_threshold | 0.2948 |
294
+ | cosine_precision | 1.0 |
295
+ | cosine_recall | 0.9677 |
296
+ | cosine_ap | 1.0 |
297
+ | dot_accuracy | 0.9677 |
298
+ | dot_accuracy_threshold | 144.9802 |
299
+ | dot_f1 | 0.9836 |
300
+ | dot_f1_threshold | 144.9802 |
301
+ | dot_precision | 1.0 |
302
+ | dot_recall | 0.9677 |
303
+ | dot_ap | 1.0 |
304
+ | manhattan_accuracy | 0.9677 |
305
+ | manhattan_accuracy_threshold | 585.5504 |
306
+ | manhattan_f1 | 0.9836 |
307
+ | manhattan_f1_threshold | 585.5504 |
308
+ | manhattan_precision | 1.0 |
309
+ | manhattan_recall | 0.9677 |
310
+ | manhattan_ap | 1.0 |
311
+ | euclidean_accuracy | 0.9677 |
312
+ | euclidean_accuracy_threshold | 26.3433 |
313
+ | euclidean_f1 | 0.9836 |
314
+ | euclidean_f1_threshold | 26.3433 |
315
+ | euclidean_precision | 1.0 |
316
+ | euclidean_recall | 0.9677 |
317
+ | euclidean_ap | 1.0 |
318
+ | max_accuracy | 0.9677 |
319
+ | max_accuracy_threshold | 585.5504 |
320
+ | max_f1 | 0.9836 |
321
+ | max_f1_threshold | 585.5504 |
322
+ | max_precision | 1.0 |
323
+ | max_recall | 0.9677 |
324
+ | **max_ap** | **1.0** |
325
+
326
+ <!--
327
+ ## Bias, Risks and Limitations
328
+
329
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
330
+ -->
331
+
332
+ <!--
333
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
 
335
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
336
+ -->
337
 
338
+ ## Training Details
339
 
340
+ ### Training Dataset
341
+
342
+ #### Unnamed Dataset
343
+
344
+
345
+ * Size: 124 training samples
346
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
347
+ * Approximate statistics based on the first 1000 samples:
348
+ | | text1 | text2 | label |
349
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
350
+ | type | string | string | int |
351
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.59 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 8.58 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
352
+ * Samples:
353
+ | text1 | text2 | label |
354
+ |:------------------------|:-----------------------|:---------------|
355
+ | <code>昨晩何を食べたの?</code> | <code>昨夜何を食べたの?</code> | <code>1</code> |
356
+ | <code>スリッパをはいたの?</code> | <code>スリッパはいてた?</code> | <code>1</code> |
357
+ | <code>家の中</code> | <code>家の中へ行こう</code> | <code>1</code> |
358
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
359
+ ```json
360
+ {
361
+ "scale": 20.0,
362
+ "similarity_fct": "cos_sim"
363
+ }
364
+ ```
365
+
366
+ ### Evaluation Dataset
367
+
368
+ #### Unnamed Dataset
369
+
370
+
371
+ * Size: 31 evaluation samples
372
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
373
+ * Approximate statistics based on the first 1000 samples:
374
+ | | text1 | text2 | label |
375
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
376
+ | type | string | string | int |
377
+ | details | <ul><li>min: 5 tokens</li><li>mean: 8.39 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.06 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
378
+ * Samples:
379
+ | text1 | text2 | label |
380
+ |:----------------------|:-----------------------|:---------------|
381
+ | <code>花壇</code> | <code>花壇を調べよう</code> | <code>1</code> |
382
+ | <code>タイマツ要らない</code> | <code>キャンドル要らない</code> | <code>1</code> |
383
+ | <code>なにも要らない</code> | <code>欲しくない</code> | <code>1</code> |
384
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
385
+ ```json
386
+ {
387
+ "scale": 20.0,
388
+ "similarity_fct": "cos_sim"
389
+ }
390
+ ```
391
+
392
+ ### Training Hyperparameters
393
+ #### Non-Default Hyperparameters
394
+
395
+ - `eval_strategy`: epoch
396
+ - `learning_rate`: 2e-05
397
+ - `num_train_epochs`: 13
398
+ - `warmup_ratio`: 0.1
399
+ - `fp16`: True
400
+ - `batch_sampler`: no_duplicates
401
+
402
+ #### All Hyperparameters
403
+ <details><summary>Click to expand</summary>
404
+
405
+ - `overwrite_output_dir`: False
406
+ - `do_predict`: False
407
+ - `eval_strategy`: epoch
408
+ - `prediction_loss_only`: True
409
+ - `per_device_train_batch_size`: 8
410
+ - `per_device_eval_batch_size`: 8
411
+ - `per_gpu_train_batch_size`: None
412
+ - `per_gpu_eval_batch_size`: None
413
+ - `gradient_accumulation_steps`: 1
414
+ - `eval_accumulation_steps`: None
415
+ - `torch_empty_cache_steps`: None
416
+ - `learning_rate`: 2e-05
417
+ - `weight_decay`: 0.0
418
+ - `adam_beta1`: 0.9
419
+ - `adam_beta2`: 0.999
420
+ - `adam_epsilon`: 1e-08
421
+ - `max_grad_norm`: 1.0
422
+ - `num_train_epochs`: 13
423
+ - `max_steps`: -1
424
+ - `lr_scheduler_type`: linear
425
+ - `lr_scheduler_kwargs`: {}
426
+ - `warmup_ratio`: 0.1
427
+ - `warmup_steps`: 0
428
+ - `log_level`: passive
429
+ - `log_level_replica`: warning
430
+ - `log_on_each_node`: True
431
+ - `logging_nan_inf_filter`: True
432
+ - `save_safetensors`: True
433
+ - `save_on_each_node`: False
434
+ - `save_only_model`: False
435
+ - `restore_callback_states_from_checkpoint`: False
436
+ - `no_cuda`: False
437
+ - `use_cpu`: False
438
+ - `use_mps_device`: False
439
+ - `seed`: 42
440
+ - `data_seed`: None
441
+ - `jit_mode_eval`: False
442
+ - `use_ipex`: False
443
+ - `bf16`: False
444
+ - `fp16`: True
445
+ - `fp16_opt_level`: O1
446
+ - `half_precision_backend`: auto
447
+ - `bf16_full_eval`: False
448
+ - `fp16_full_eval`: False
449
+ - `tf32`: None
450
+ - `local_rank`: 0
451
+ - `ddp_backend`: None
452
+ - `tpu_num_cores`: None
453
+ - `tpu_metrics_debug`: False
454
+ - `debug`: []
455
+ - `dataloader_drop_last`: False
456
+ - `dataloader_num_workers`: 0
457
+ - `dataloader_prefetch_factor`: None
458
+ - `past_index`: -1
459
+ - `disable_tqdm`: False
460
+ - `remove_unused_columns`: True
461
+ - `label_names`: None
462
+ - `load_best_model_at_end`: False
463
+ - `ignore_data_skip`: False
464
+ - `fsdp`: []
465
+ - `fsdp_min_num_params`: 0
466
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
467
+ - `fsdp_transformer_layer_cls_to_wrap`: None
468
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
469
+ - `deepspeed`: None
470
+ - `label_smoothing_factor`: 0.0
471
+ - `optim`: adamw_torch
472
+ - `optim_args`: None
473
+ - `adafactor`: False
474
+ - `group_by_length`: False
475
+ - `length_column_name`: length
476
+ - `ddp_find_unused_parameters`: None
477
+ - `ddp_bucket_cap_mb`: None
478
+ - `ddp_broadcast_buffers`: False
479
+ - `dataloader_pin_memory`: True
480
+ - `dataloader_persistent_workers`: False
481
+ - `skip_memory_metrics`: True
482
+ - `use_legacy_prediction_loop`: False
483
+ - `push_to_hub`: False
484
+ - `resume_from_checkpoint`: None
485
+ - `hub_model_id`: None
486
+ - `hub_strategy`: every_save
487
+ - `hub_private_repo`: False
488
+ - `hub_always_push`: False
489
+ - `gradient_checkpointing`: False
490
+ - `gradient_checkpointing_kwargs`: None
491
+ - `include_inputs_for_metrics`: False
492
+ - `eval_do_concat_batches`: True
493
+ - `fp16_backend`: auto
494
+ - `push_to_hub_model_id`: None
495
+ - `push_to_hub_organization`: None
496
+ - `mp_parameters`:
497
+ - `auto_find_batch_size`: False
498
+ - `full_determinism`: False
499
+ - `torchdynamo`: None
500
+ - `ray_scope`: last
501
+ - `ddp_timeout`: 1800
502
+ - `torch_compile`: False
503
+ - `torch_compile_backend`: None
504
+ - `torch_compile_mode`: None
505
+ - `dispatch_batches`: None
506
+ - `split_batches`: None
507
+ - `include_tokens_per_second`: False
508
+ - `include_num_input_tokens_seen`: False
509
+ - `neftune_noise_alpha`: None
510
+ - `optim_target_modules`: None
511
+ - `batch_eval_metrics`: False
512
+ - `eval_on_start`: False
513
+ - `eval_use_gather_object`: False
514
+ - `batch_sampler`: no_duplicates
515
+ - `multi_dataset_batch_sampler`: proportional
516
+
517
+ </details>
518
+
519
+ ### Training Logs
520
+ | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
521
+ |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
522
+ | None | 0 | - | - | 1.0000 |
523
+ | 1.0 | 16 | 0.5617 | 0.5022 | 1.0000 |
524
+ | 2.0 | 32 | 0.2461 | 0.3870 | 1.0000 |
525
+ | 3.0 | 48 | 0.0968 | 0.3929 | 1.0000 |
526
+ | 4.0 | 64 | 0.0408 | 0.4012 | 1.0000 |
527
+ | 5.0 | 80 | 0.0151 | 0.4023 | 1.0000 |
528
+ | 6.0 | 96 | 0.0118 | 0.3851 | 1.0000 |
529
+ | 7.0 | 112 | 0.0087 | 0.3637 | 1.0000 |
530
+ | 8.0 | 128 | 0.0053 | 0.3662 | 1.0000 |
531
+ | 9.0 | 144 | 0.0046 | 0.3799 | 1.0000 |
532
+ | 10.0 | 160 | 0.002 | 0.3772 | 1.0000 |
533
+ | 11.0 | 176 | 0.0025 | 0.3765 | 1.0000 |
534
+ | 12.0 | 192 | 0.0021 | 0.3751 | 1.0000 |
535
+ | 13.0 | 208 | 0.0015 | 0.3752 | 1.0000 |
536
+
537
+
538
+ ### Framework Versions
539
+ - Python: 3.10.14
540
+ - Sentence Transformers: 3.0.1
541
+ - Transformers: 4.44.2
542
+ - PyTorch: 2.4.0+cu121
543
+ - Accelerate: 0.34.0
544
+ - Datasets: 2.20.0
545
+ - Tokenizers: 0.19.1
546
+
547
+ ## Citation
548
+
549
+ ### BibTeX
550
+
551
+ #### Sentence Transformers
552
+ ```bibtex
553
+ @inproceedings{reimers-2019-sentence-bert,
554
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
555
+ author = "Reimers, Nils and Gurevych, Iryna",
556
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
557
+ month = "11",
558
+ year = "2019",
559
+ publisher = "Association for Computational Linguistics",
560
+ url = "https://arxiv.org/abs/1908.10084",
561
+ }
562
+ ```
563
+
564
+ #### MultipleNegativesRankingLoss
565
+ ```bibtex
566
+ @misc{henderson2017efficient,
567
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
568
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
569
+ year={2017},
570
+ eprint={1705.00652},
571
+ archivePrefix={arXiv},
572
+ primaryClass={cs.CL}
573
+ }
574
+ ```
575
+
576
+ <!--
577
+ ## Glossary
578
+
579
+ *Clearly define terms in order to be accessible across audiences.*
580
+ -->
581
+
582
+ <!--
583
+ ## Model Card Authors
584
+
585
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
586
+ -->
587
+
588
+ <!--
589
  ## Model Card Contact
590
 
591
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
592
+ -->
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e13a468a48a1cb0cbbed249bca03a5dd2ce27ea2d2a3b747e152dde447dd1782
3
  size 442491744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fc4e45d599bf652009a700bbe34833cd60aa374b5cc54118f054d6133e99844
3
  size 442491744