File size: 1,719 Bytes
921f39a
 
 
 
 
508d597
 
921f39a
 
 
 
 
 
 
 
 
 
 
508d597
 
 
 
 
 
 
921f39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508d597
921f39a
 
 
 
 
508d597
921f39a
 
 
 
c0d5665
 
508d597
 
921f39a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-finetuned-Coca
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-small-finetuned-Coca

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 35.7982
- Rouge2: 14.0591
- Rougel: 29.6744
- Rougelsum: 29.7484
- Gen Len: 17.1045

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 201  | nan             | 35.7982 | 14.0591 | 29.6744 | 29.7484   | 17.1045 |
| No log        | 2.0   | 402  | nan             | 35.7982 | 14.0591 | 29.6744 | 29.7484   | 17.1045 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0