LeonardPuettmann
commited on
Commit
•
55af27f
1
Parent(s):
3aee9ec
Update README.md
Browse files
README.md
CHANGED
@@ -28,8 +28,15 @@ Q: "Please explain the allegory of the cave to me."
|
|
28 |
To load the model, you can apply the adapter straight to the original base model:
|
29 |
|
30 |
```python
|
|
|
|
|
|
|
31 |
import torch
|
32 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
|
|
|
|
|
33 |
|
34 |
base_model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
35 |
bnb_config = BitsAndBytesConfig(
|
@@ -48,12 +55,14 @@ base_model = AutoModelForCausalLM.from_pretrained(
|
|
48 |
|
49 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)
|
50 |
|
51 |
-
|
52 |
-
model_input = eval_tokenizer(prompt, return_tensors="pt").to("cuda")
|
53 |
-
|
54 |
ft_model.eval()
|
|
|
|
|
|
|
|
|
55 |
with torch.no_grad():
|
56 |
-
print(
|
57 |
```
|
58 |
|
59 |
|
|
|
28 |
To load the model, you can apply the adapter straight to the original base model:
|
29 |
|
30 |
```python
|
31 |
+
!pip install -q -U git+https://github.com/huggingface/peft.git
|
32 |
+
!pip install -q -U bitsandbytes
|
33 |
+
|
34 |
import torch
|
35 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
36 |
+
from peft import PeftModel
|
37 |
+
from huggingface_hub import notebook_login
|
38 |
+
|
39 |
+
# notebook_login() # You may need to log in to HuggingFace to download the Mistral model
|
40 |
|
41 |
base_model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
42 |
bnb_config = BitsAndBytesConfig(
|
|
|
55 |
|
56 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)
|
57 |
|
58 |
+
ft_model = PeftModel.from_pretrained(base_model, "LeonardPuettmann/PhiloMistral-7B-Instruct-v0.3")
|
|
|
|
|
59 |
ft_model.eval()
|
60 |
+
|
61 |
+
prompt = "What is the nature of the self? Is there a soul?"
|
62 |
+
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
|
63 |
+
|
64 |
with torch.no_grad():
|
65 |
+
print(tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=256, repetition_penalty=1.15)[0], skip_special_tokens=True))
|
66 |
```
|
67 |
|
68 |
|