File size: 205,224 Bytes
7c49eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mistral model."""
from termcolor import colored
from tqdm import tqdm
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import inspect
import math
import copy
import time
import warnings
from typing import List, Optional, Tuple, Union
import gc
import os
import tempfile
import random
import numpy as np
import warnings
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from matplotlib.colors import LinearSegmentedColormap, LogNorm
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from configuration_mistral_advanced import VisionEncoderDecoderConfig
from configuration_mistral_advanced import EncoderDecoderConfig
from transformers.auto.configuration_auto import AutoConfig
from transformers.auto.modeling_auto import AutoModel, AutoModelForCausalLM
from collections import defaultdict
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)



from configuration_mistral_advanced import MistralConfig


if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

    _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "MistralConfig"


# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )



# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)

def _make_sliding_window_causal_mask(
    input_ids_shape: torch.Size,
    dtype: torch.dtype,
    device: torch.device,
    past_key_values_length: int = 0,
    sliding_window: int = 4096,
):
    """
    Make causal mask used for sliding window attention
    """
    bsz, tgt_len = input_ids_shape

    tensor = torch.full(
        (tgt_len, tgt_len),
        fill_value=1,
        device=device,
    )
    mask = torch.tril(tensor, diagonal=0)
    # make the mask banded to account for sliding window
    mask = torch.triu(mask, diagonal=-sliding_window)
    mask = torch.log(mask).to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)

# Inverse dim formula to find dim based on number of rotations
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
    return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))

# Find dim range bounds based on rotations
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
    low = math.floor(_yarn_find_correction_dim(
        low_rot, dim, base, max_position_embeddings))
    high = math.ceil(_yarn_find_correction_dim(
        high_rot, dim, base, max_position_embeddings))
    return max(low, 0), min(high, dim-1)  # Clamp values just in case

def _yarn_linear_ramp_mask(min, max, dim):
    if min == max:
        max += 0.001  # Prevent singularity

    linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
    ramp_func = torch.clamp(linear_func, 0, 1)
    return ramp_func

def _yarn_get_mscale(scale=1):
    if scale <= 1:
        return 1.0
    return 0.07 * math.log(scale) + 1.0


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
class MistralRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        MistralRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
# TODO @Arthur no longer copied from LLama after static cache
class MistralRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

### YARN ADDITIONS

class MistralDynamicNTKScalingRotaryEmbedding(MistralRotaryEmbedding):
    """MistralRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

class MistralLinearScalingRotaryEmbedding(MistralRotaryEmbedding):
    """MistralRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.cos().to(dtype), persistent=False)

class MistralYaRNScaledRotaryEmbedding(torch.nn.Module):
    """MistralRotaryEmbedding extended with YaRN. See: https://arxiv.org/abs/2309.00071"""
    def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048,
                 extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.scale = scale
        self.original_max_position_embeddings = original_max_position_embeddings
        self.extrapolation_factor = extrapolation_factor
        self.attn_factor = attn_factor
        self.beta_fast = beta_fast
        self.beta_slow = beta_slow

        self.yarn(device)

        # Build here to make `torch.jit.trace` work.
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        dtype = torch.get_default_dtype()

        self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
        self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len

            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
            self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

    def yarn(self, device):
        pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
        inv_freq_extrapolation = 1.0 / pos_freqs
        inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)

        low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
        inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
        inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask

        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation

class MistralDynamicYaRNScaledRotaryEmbedding(torch.nn.Module):
    """MistralRotaryEmbedding extended with Dynamic YaRN. See: https://arxiv.org/abs/2309.00071"""
    def __init__(self, dim, max_position_embeddings=2048, base=10000, original_max_position_embeddings=2048,
                 extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.original_max_position_embeddings = original_max_position_embeddings
        self.extrapolation_factor = extrapolation_factor
        self.attn_factor = attn_factor
        self.beta_fast = beta_fast
        self.beta_slow = beta_slow

        if finetuned:
            self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device)
        else:
            inv_freq = 1.0 / \
                (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)
            self.mscale = 1

        # Build here to make `torch.jit.trace` work.
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        dtype = torch.get_default_dtype()

        self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
        self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len

            self.yarn(seq_len / self.max_position_embeddings, x.device)

            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
            self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

    def yarn(self, scale, device):
        pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
        inv_freq_extrapolation = 1.0 / pos_freqs
        inv_freq_interpolation = 1.0 / (scale * pos_freqs)

        low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
        inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
        inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask

        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.mscale = float(_yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
###################




# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
# TODO @Arthur no longer copied from LLama after static cache
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class MistralMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class MistralAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """

    def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True
        self.attention_dropout = config.attention_dropout

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.rotary_emb = MistralRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )

            attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class MistralFlashAttention2(MistralAttention):
    """
    Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ):
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

            # overwrite attention_mask with padding_mask
            attention_mask = kwargs.pop("padding_mask")
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

        # Because the input can be padded, the absolute sequence length depends on the max position id.
        rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
        cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)

        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        use_sliding_windows = (
            _flash_supports_window_size
            and getattr(self.config, "sliding_window", None) is not None
            and kv_seq_len > self.config.sliding_window
        )

        if not _flash_supports_window_size:
            logger.warning_once(
                "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
                " make sure to upgrade flash-attn library."
            )

        if past_key_value is not None:
            # Activate slicing cache only if the config has a value `sliding_windows` attribute
            cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
            if (
                getattr(self.config, "sliding_window", None) is not None
                and kv_seq_len > self.config.sliding_window
                and cache_has_contents
            ):
                slicing_tokens = 1 - self.config.sliding_window

                past_key = past_key_value[self.layer_idx][0]
                past_value = past_key_value[self.layer_idx][1]

                past_key = past_key[:, :, slicing_tokens:, :].contiguous()
                past_value = past_value[:, :, slicing_tokens:, :].contiguous()

                if past_key.shape[-2] != self.config.sliding_window - 1:
                    raise ValueError(
                        f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
                        f" {past_key.shape}"
                    )

                if attention_mask is not None:
                    attention_mask = attention_mask[:, slicing_tokens:]
                    attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)

            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 just to be sure everything works as expected.
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        # Reashape to the expected shape for Flash Attention
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        attn_output = self._flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=dropout_rate,
            use_sliding_windows=use_sliding_windows,
        )

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

    def _flash_attention_forward(
        self,
        query_states,
        key_states,
        value_states,
        attention_mask,
        query_length,
        dropout=0.0,
        softmax_scale=None,
        use_sliding_windows=False,
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`float`):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
            use_sliding_windows (`bool`, *optional*):
                Whether to activate sliding window attention.
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            if not use_sliding_windows:
                attn_output_unpad = flash_attn_varlen_func(
                    query_states,
                    key_states,
                    value_states,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_q=max_seqlen_in_batch_q,
                    max_seqlen_k=max_seqlen_in_batch_k,
                    dropout_p=dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                )
            else:
                attn_output_unpad = flash_attn_varlen_func(
                    query_states,
                    key_states,
                    value_states,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_q=max_seqlen_in_batch_q,
                    max_seqlen_k=max_seqlen_in_batch_k,
                    dropout_p=dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                    window_size=(self.config.sliding_window, self.config.sliding_window),
                )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            if not use_sliding_windows:
                attn_output = flash_attn_func(
                    query_states,
                    key_states,
                    value_states,
                    dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                )
            else:
                attn_output = flash_attn_func(
                    query_states,
                    key_states,
                    value_states,
                    dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                    window_size=(self.config.sliding_window, self.config.sliding_window),
                )

        return attn_output

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape

        # On the first iteration we need to properly re-create the padding mask
        # by slicing it on the proper place
        if kv_seq_len != attention_mask.shape[-1]:
            attention_mask_num_tokens = attention_mask.shape[-1]
            attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]

        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)

        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
        value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)

        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
# TODO @Arthur no longer copied from LLama after static cache
class MistralSdpaAttention(MistralAttention):
    """
    Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """

    # Adapted from MistralAttention.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)

        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and attention_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
            is_causal=self.is_causal and attention_mask is None and q_len > 1,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value


MISTRAL_ATTENTION_CLASSES = {
    "eager": MistralAttention,
    "flash_attention_2": MistralFlashAttention2,
    "sdpa": MistralSdpaAttention,
}


class MistralDecoderLayer(nn.Module):
    def __init__(self, config: MistralConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)

        self.mlp = MistralMLP(config)
        self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


MISTRAL_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`MistralConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
    MISTRAL_START_DOCSTRING,
)
class MistralPreTrainedModel(PreTrainedModel):
    config_class = MistralConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MistralDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


MISTRAL_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance;
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

""" Classes to support Vision-Encoder-Text-Decoder architectures"""

VISION_ENCODER_DECODER_START_DOCSTRING = r"""
    This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model
    as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via
    [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
    function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
    generative task, like image captioning.

    The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
    tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
    Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
    Zhou, Wei Li, Peter J. Liu.

    Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained
    Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical
    character recognition (OCR) yields a significant performance improvement.

    After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any
    other models (see the examples for more information).

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using an image processor (e.g. if you use ViT as the encoder,
            you should use [`AutoImageProcessor`]). See [`ViTImageProcessor.__call__`] for details.
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
            right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
        decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
            This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
            of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
            decoder.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
            representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
            into associated vectors than the model's internal embedding lookup matrix.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
            ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
        kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:

            - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
            - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
"""

DEPRECATION_WARNING = (
    "Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
    " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
    " fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the"
    " labels, no need to pass them yourself anymore."
)

ENCODER_DECODER_START_DOCSTRING = r"""
    This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
    encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
    [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
    function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
    generative task, like summarization.

    The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
    tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
    Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
    Zhou, Wei Li, Peter J. Liu.

    After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
    (see the examples for more information).

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

ENCODER_DECODER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
            right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
        decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
            This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
            of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
            decoder.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
            representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
            into associated vectors than the model's internal embedding lookup matrix.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
            ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
        kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:

            - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
            - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
"""


@add_start_docstrings(
    "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
    MISTRAL_START_DOCSTRING,
)
class MistralModel(MistralPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]

    Args:
        config: MistralConfig
    """

    def __init__(self, config: MistralConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        past_key_values_length = 0

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
            is_padding_right = attention_mask[:, -1].sum().item() != batch_size
            if is_padding_right:
                raise ValueError(
                    "You are attempting to perform batched generation with padding_side='right'"
                    " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
                    " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                )

        if self._attn_implementation == "flash_attention_2":
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif self._attn_implementation == "sdpa" and not output_attentions:
            # output_attentions=True can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
                sliding_window=self.config.sliding_window,
            )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class MistralForCausalLM(MistralPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = MistralModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, MistralForCausalLM

        >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
        >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Ensure tensors are on the same device
            shift_labels = shift_labels.to(shift_logits.device)
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past
@add_start_docstrings(
    """
    The Mistral Model transformer with a sequence classification head on top (linear layer).

    [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    MISTRAL_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
class MistralForSequenceClassification(MistralPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = MistralModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
                    logits.device
                )
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

@add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING)
class VisionEncoderDecoderModel(PreTrainedModel):
    r"""
    [`VisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with
    one of the base vision model classes of the library as encoder and another one as decoder when created with the
    :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
    :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
    """

    config_class = VisionEncoderDecoderConfig
    base_model_prefix = "vision_encoder_decoder"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True

    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
    ):
        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        if config.decoder.cross_attention_hidden_size is not None:
            if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
                raise ValueError(
                    "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
                    f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
                    f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
                    " `config.encoder.hidden_size`."
                )

        # initialize with config
        # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        super().__init__(config)

        if encoder is None:
            encoder = AutoModel.from_config(config.encoder)

        if decoder is None:
            decoder = AutoModelForCausalLM.from_config(config.decoder)

        self.encoder = encoder
        self.decoder = decoder

        if self.encoder.config.to_dict() != self.config.encoder.to_dict():
            logger.warning(
                f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
                f" {self.config.encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )

        # make sure that the individual model's config refers to the shared config
        # so that the updates to the config will be synced
        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

        # encoder outputs might need to be projected to different dimension for decoder
        if (
            self.encoder.config.hidden_size != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)

        if self.encoder.get_output_embeddings() is not None:
            raise ValueError(
                f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
            )

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def get_output_embeddings(self):
        return self.decoder.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        return self.decoder.set_output_embeddings(new_embeddings)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r"""
        Example:

        ```python
        >>> from transformers import VisionEncoderDecoderModel, AutoImageProcessor, AutoTokenizer
        >>> from PIL import Image
        >>> import requests

        >>> image_processor = AutoImageProcessor.from_pretrained("ydshieh/vit-gpt2-coco-en")
        >>> decoder_tokenizer = AutoTokenizer.from_pretrained("ydshieh/vit-gpt2-coco-en")
        >>> model = VisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> img = Image.open(requests.get(url, stream=True).raw)
        >>> pixel_values = image_processor(images=img, return_tensors="pt").pixel_values  # Batch size 1

        >>> output_ids = model.generate(
        ...     pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True
        ... ).sequences

        >>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        >>> preds = [pred.strip() for pred in preds]

        >>> assert preds == ["a cat laying on top of a couch next to another cat"]
        ```"""

        from_tf = kwargs.pop("from_tf", False)
        if from_tf:
            from transformers import TFVisionEncoderDecoderModel

            # a workaround to load from tensorflow checkpoint
            # Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get
            # extended before saving those components. For example, The name of `_tf_model.encoder.vit` is
            # `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The
            # [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`,
            # which should not occur when we want to save the components alone.
            # There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
            #   https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
            #   (the change in `src/transformers/modeling_tf_utils.py`)
            _tf_model = TFVisionEncoderDecoderModel.from_pretrained(
                pretrained_model_name_or_path, *model_args, **kwargs
            )
            config = _tf_model.config

            # Using `tf_model` instead
            encoder = _tf_model.encoder.__class__(_tf_model.config.encoder)
            decoder = _tf_model.decoder.__class__(_tf_model.config.decoder)
            # Make sure models are built
            encoder(encoder.dummy_inputs)
            decoder(decoder.dummy_inputs)

            # Get the variable correspondence between `_tf_model` and `encoder` and `decoder`
            encoder_variables = {}
            for v in encoder.trainable_variables + encoder.non_trainable_variables:
                encoder_variables["/".join(v.name.split("/")[1:])] = v
            decoder_variables = {}
            for v in decoder.trainable_variables + decoder.non_trainable_variables:
                decoder_variables["/".join(v.name.split("/")[1:])] = v

            _encoder_variables = {}
            for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables:
                _encoder_variables["/".join(v.name.split("/")[2:])] = v
            _decoder_variables = {}
            for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables:
                _decoder_variables["/".join(v.name.split("/")[2:])] = v

            # assign weight values to `encoder` and `decoder` from `_tf_model`
            for name, v in encoder_variables.items():
                v.assign(_encoder_variables[name])
            for name, v in decoder_variables.items():
                v.assign(_decoder_variables[name])

            tf_model = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder)

            # Deal with `enc_to_dec_proj`
            if hasattr(_tf_model, "enc_to_dec_proj"):
                tf_model(tf_model.dummy_inputs)
                tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel)
                tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias)

            with tempfile.TemporaryDirectory() as tmpdirname:
                encoder_dir = os.path.join(tmpdirname, "encoder")
                decoder_dir = os.path.join(tmpdirname, "decoder")
                tf_model.encoder.save_pretrained(encoder_dir)
                tf_model.decoder.save_pretrained(decoder_dir)

                if hasattr(tf_model, "enc_to_dec_proj"):
                    enc_to_dec_proj_weight = torch.transpose(
                        torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0
                    )
                    enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy())

                del _tf_model
                del tf_model
                gc.collect()

                model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
                    encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True
                )
                # This is only for copying some specific attributes of this particular model.
                model.config = config

                if hasattr(model, "enc_to_dec_proj"):
                    model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous()
                    model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous()

                return model

        # At the moment fast initialization is not supported for composite models
        if kwargs.get("_fast_init", False):
            logger.warning(
                "Fast initialization is currently not supported for VisionEncoderDecoderModel. "
                "Falling back to slow initialization..."
            )
        kwargs["_fast_init"] = False

        return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

    @classmethod
    def from_encoder_decoder_pretrained(
        cls,
        encoder_pretrained_model_name_or_path: str = None,
        decoder_pretrained_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> PreTrainedModel:
        r"""
        Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
        checkpoints.


        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you need to first set it back in training mode with `model.train()`.

        Params:
            encoder_pretrained_model_name_or_path (`str`, *optional*):
                Information necessary to initiate the image encoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
                      example is `google/vit-base-patch16-224-in21k`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
                Information necessary to initiate the text decoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args (remaining positional arguments, *optional*):
                All remaning positional arguments will be passed to the underlying model's `__init__` method.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`).

                - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
                - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
                - To update the parent model configuration, do not use a prefix for each configuration parameter.

                Behaves differently depending on whether a `config` is provided or automatically loaded.

        Example:

        ```python
        >>> from transformers import VisionEncoderDecoderModel

        >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
        >>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
        ...     "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
        ... )
        >>> # saving model after fine-tuning
        >>> model.save_pretrained("./vit-bert")
        >>> # load fine-tuned model
        >>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
        ```"""

        kwargs_encoder = {
            argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
        }

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        # remove encoder, decoder kwargs from kwargs
        for key in kwargs_encoder.keys():
            del kwargs["encoder_" + key]
        for key in kwargs_decoder.keys():
            del kwargs["decoder_" + key]

        # Load and initialize the encoder and decoder
        # The distinction between encoder and decoder at the model level is made
        # by the value of the flag `is_decoder` that we need to set correctly.
        encoder = kwargs_encoder.pop("model", None)
        if encoder is None:
            if encoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_encoder:
                encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
                    encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
                )

                if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
                    logger.info(
                        f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
                        "from a decoder model. Cross-attention and casual mask are disabled."
                    )
                    encoder_config.is_decoder = False
                    encoder_config.add_cross_attention = False

                kwargs_encoder["config"] = encoder_config

            encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)

        decoder = kwargs_decoder.pop("model", None)
        if decoder is None:
            if decoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_decoder:
                decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
                    decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                )

                if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
                    logger.info(
                        f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
                        f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
                        f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
                    )
                    decoder_config.is_decoder = True
                    decoder_config.add_cross_attention = True

                kwargs_decoder["config"] = decoder_config

            if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
                logger.warning(
                    f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
                    f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
                    "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
                    "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
                    "`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
                )

            decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)

        # instantiate config with corresponding kwargs
        config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)

        # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        return cls(encoder=encoder, decoder=decoder, config=config)

    @add_start_docstrings_to_model_forward(VISION_ENCODER_DECODER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoProcessor, VisionEncoderDecoderModel
        >>> import requests
        >>> from PIL import Image
        >>> import torch

        >>> processor = AutoProcessor.from_pretrained("microsoft/trocr-base-handwritten")
        >>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")

        >>> # load image from the IAM dataset
        >>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

        >>> # training
        >>> model.config.decoder_start_token_id = processor.tokenizer.eos_token_id
        >>> model.config.pad_token_id = processor.tokenizer.pad_token_id
        >>> model.config.vocab_size = model.config.decoder.vocab_size

        >>> pixel_values = processor(image, return_tensors="pt").pixel_values
        >>> text = "hello world"
        >>> labels = processor.tokenizer(text, return_tensors="pt").input_ids
        >>> outputs = model(pixel_values=pixel_values, labels=labels)
        >>> loss = outputs.loss

        >>> # inference (generation)
        >>> generated_ids = model.generate(pixel_values)
        >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if encoder_outputs is None:
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")

            encoder_outputs = self.encoder(
                pixel_values=pixel_values,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )
        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs[0]

        # optionally project encoder_hidden_states
        if (
            self.encoder.config.hidden_size != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)

        # else:
        encoder_attention_mask = None

        if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
            decoder_input_ids = shift_tokens_right(
                labels, self.config.pad_token_id, self.config.decoder_start_token_id
            )

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Compute loss independent from decoder (as some shift the logits inside them)
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
    ):
        decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
        decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
        input_dict = {
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "decoder_input_ids": decoder_inputs["input_ids"],
            "encoder_outputs": encoder_outputs,
            "past_key_values": decoder_inputs["past_key_values"],
            "use_cache": use_cache,
        }
        return input_dict

    def resize_token_embeddings(self, *args, **kwargs):
        raise NotImplementedError(
            "Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the"
            " respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
        )

    def _reorder_cache(self, past_key_values, beam_idx):
        # apply decoder cache reordering here
        return self.decoder._reorder_cache(past_key_values, beam_idx)

@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
class EncoderDecoderModel(PreTrainedModel):
    r"""
    [`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one
    of the base model classes of the library as encoder and another one as decoder when created with the
    :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
    :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
    """

    config_class = EncoderDecoderConfig
    base_model_prefix = "encoder_decoder"
    main_input_name = "input_ids"
    supports_gradient_checkpointing = True

    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
    ):
        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        if config.decoder.cross_attention_hidden_size is not None:
            if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
                raise ValueError(
                    "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
                    f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
                    f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
                    " `config.encoder.hidden_size`."
                )

        # initialize with config
        super().__init__(config)

        if encoder is None:
            from ..auto.modeling_auto import AutoModel

            encoder = AutoModel.from_config(config.encoder)

        if decoder is None:
            from ..auto.modeling_auto import AutoModelForCausalLM

            decoder = AutoModelForCausalLM.from_config(config.decoder)

        self.encoder = encoder
        self.decoder = decoder

        if self.encoder.config.to_dict() != self.config.encoder.to_dict():
            logger.warning(
                f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
                f" {self.config.encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )

        # make sure that the individual model's config refers to the shared config
        # so that the updates to the config will be synced
        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

        # encoder outputs might need to be projected to different dimension for decoder
        if (
            self.encoder.config.hidden_size != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)

        if self.encoder.get_output_embeddings() is not None:
            raise ValueError(
                f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
            )

        decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys())
        if "encoder_hidden_states" not in decoder_signature:
            raise ValueError(
                "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
                "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
            )

        # tie encoder, decoder weights if config set accordingly
        self.tie_weights()

    def tie_weights(self):
        # tie encoder & decoder if needed
        if self.config.tie_encoder_decoder:
            # tie encoder and decoder base model
            decoder_base_model_prefix = self.decoder.base_model_prefix
            tied_weights = self._tie_encoder_decoder_weights(
                self.encoder,
                self.decoder._modules[decoder_base_model_prefix],
                self.decoder.base_model_prefix,
                "encoder",
            )
            # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
            # attributed not an instance member, therefore modifying it will modify the entire class
            # Leading to issues on subsequent calls by different tests or subsequent calls.
            self._dynamic_tied_weights_keys = tied_weights

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def get_input_embeddings(self):
        return self.encoder.get_input_embeddings()

    def get_output_embeddings(self):
        return self.decoder.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        return self.decoder.set_output_embeddings(new_embeddings)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r"""
        Example:

        ```python
        >>> from transformers import EncoderDecoderModel

        >>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
        ```"""

        from_tf = kwargs.pop("from_tf", False)
        if from_tf:
            from transformers import TFEncoderDecoderModel

            # a workaround to load from tensorflow checkpoint
            # Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get
            # extended before saving those components. For example, The name of `_tf_model.encoder.vit` is
            # `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The
            # [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`,
            # which should not occur when we want to save the components alone.
            # There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
            #   https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
            #   (the change in `src/transformers/modeling_tf_utils.py`)
            _tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
            config = _tf_model.config

            # Using `tf_model` instead
            encoder = _tf_model.encoder.__class__(_tf_model.config.encoder)
            decoder = _tf_model.decoder.__class__(_tf_model.config.decoder)
            # Make sure models are built
            encoder(encoder.dummy_inputs)
            decoder(decoder.dummy_inputs)

            # Get the variable correspondence between `_tf_model` and `encoder` and `decoder`
            encoder_variables = {}
            for v in encoder.trainable_variables + encoder.non_trainable_variables:
                encoder_variables["/".join(v.name.split("/")[1:])] = v
            decoder_variables = {}
            for v in decoder.trainable_variables + decoder.non_trainable_variables:
                decoder_variables["/".join(v.name.split("/")[1:])] = v

            _encoder_variables = {}
            for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables:
                _encoder_variables["/".join(v.name.split("/")[2:])] = v
            _decoder_variables = {}
            for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables:
                _decoder_variables["/".join(v.name.split("/")[2:])] = v

            # assign weight values to `encoder` and `decoder` from `_tf_model`
            for name, v in encoder_variables.items():
                v.assign(_encoder_variables[name])
            for name, v in decoder_variables.items():
                v.assign(_decoder_variables[name])

            tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder)

            # Deal with `enc_to_dec_proj`
            if hasattr(_tf_model, "enc_to_dec_proj"):
                tf_model(tf_model.dummy_inputs)
                tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel)
                tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias)

            with tempfile.TemporaryDirectory() as tmpdirname:
                encoder_dir = os.path.join(tmpdirname, "encoder")
                decoder_dir = os.path.join(tmpdirname, "decoder")
                tf_model.encoder.save_pretrained(encoder_dir)
                tf_model.decoder.save_pretrained(decoder_dir)

                if hasattr(tf_model, "enc_to_dec_proj"):
                    enc_to_dec_proj_weight = torch.transpose(
                        torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0
                    )
                    enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy())

                del _tf_model
                del tf_model
                gc.collect()

                model = EncoderDecoderModel.from_encoder_decoder_pretrained(
                    encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True
                )
                # This is only for copying some specific attributes of this particular model.
                model.config = config

                if hasattr(model, "enc_to_dec_proj"):
                    model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous()
                    model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous()

                return model

        # At the moment fast initialization is not supported for composite models
        if kwargs.get("_fast_init", False):
            logger.warning(
                "Fast initialization is currently not supported for EncoderDecoderModel. "
                "Falling back to slow initialization..."
            )
        kwargs["_fast_init"] = False

        return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

    @classmethod
    def from_encoder_decoder_pretrained(
        cls,
        encoder_pretrained_model_name_or_path: str = None,
        decoder_pretrained_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> PreTrainedModel:
        r"""
        Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
        checkpoints.


        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you need to first set it back in training mode with `model.train()`.

        Params:
            encoder_pretrained_model_name_or_path (`str`, *optional*):
                Information necessary to initiate the encoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
                Information necessary to initiate the decoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args (remaining positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`).

                - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
                - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
                - To update the parent model configuration, do not use a prefix for each configuration parameter.

                Behaves differently depending on whether a `config` is provided or automatically loaded.

        Example:

        ```python
        >>> from transformers import EncoderDecoderModel

        >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
        >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
        >>> # saving model after fine-tuning
        >>> model.save_pretrained("./bert2bert")
        >>> # load fine-tuned model
        >>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
        ```"""

        kwargs_encoder = {
            argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
        }

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        # remove encoder, decoder kwargs from kwargs
        for key in kwargs_encoder.keys():
            del kwargs["encoder_" + key]
        for key in kwargs_decoder.keys():
            del kwargs["decoder_" + key]

        # Load and initialize the encoder and decoder
        # The distinction between encoder and decoder at the model level is made
        # by the value of the flag `is_decoder` that we need to set correctly.
        encoder = kwargs_encoder.pop("model", None)
        if encoder is None:
            if encoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_encoder:
                encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
                    encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
                )

                if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
                    logger.info(
                        f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
                        "from a decoder model. Cross-attention and casual mask are disabled."
                    )
                    encoder_config.is_decoder = False
                    encoder_config.add_cross_attention = False

                kwargs_encoder["config"] = encoder_config

            encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)

        decoder = kwargs_decoder.pop("model", None)
        if decoder is None:
            if decoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_decoder:
                decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
                    decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                )

                if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
                    logger.info(
                        f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
                        f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
                        f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
                    )
                    decoder_config.is_decoder = True
                    decoder_config.add_cross_attention = True

                kwargs_decoder["config"] = decoder_config

            if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
                logger.warning(
                    f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
                    f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
                    "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
                    "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
                    "`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
                )

            decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)

        # instantiate config with corresponding kwargs
        config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
        return cls(encoder=encoder, decoder=decoder, config=config)

    @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple, Seq2SeqLMOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import EncoderDecoderModel, BertTokenizer
        >>> import torch

        >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
        >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
        ...     "google-bert/bert-base-uncased", "google-bert/bert-base-uncased"
        ... )  # initialize Bert2Bert from pre-trained checkpoints

        >>> # training
        >>> model.config.decoder_start_token_id = tokenizer.cls_token_id
        >>> model.config.pad_token_id = tokenizer.pad_token_id
        >>> model.config.vocab_size = model.config.decoder.vocab_size

        >>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids
        >>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids
        >>> outputs = model(input_ids=input_ids, labels=labels)
        >>> loss, logits = outputs.loss, outputs.logits

        >>> # save and load from pretrained
        >>> model.save_pretrained("bert2bert")
        >>> model = EncoderDecoderModel.from_pretrained("bert2bert")

        >>> # generation
        >>> generated = model.generate(input_ids)
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )
        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs[0]

        # optionally project encoder_hidden_states
        if (
            self.encoder.config.hidden_size != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)

        if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
            decoder_input_ids = shift_tokens_right(
                labels, self.config.pad_token_id, self.config.decoder_start_token_id
            )
            if decoder_attention_mask is None:
                decoder_attention_mask = decoder_input_ids.new_tensor(decoder_input_ids != self.config.pad_token_id)

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Compute loss independent from decoder (as some shift the logits inside them)
        loss = None
        if labels is not None:
            warnings.warn(DEPRECATION_WARNING, FutureWarning)
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
    ):
        decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
        decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
        input_dict = {
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "decoder_input_ids": decoder_inputs["input_ids"],
            "encoder_outputs": encoder_outputs,
            "past_key_values": decoder_inputs["past_key_values"],
            "use_cache": use_cache,
        }
        return input_dict

    def resize_token_embeddings(self, *args, **kwargs):
        raise NotImplementedError(
            "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
            " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
            " model.decoder.resize_token_embeddings(...))"
        )

    def _reorder_cache(self, past_key_values, beam_idx):
        # apply decoder cache reordering here
        return self.decoder._reorder_cache(past_key_values, beam_idx)


class MistralForCausalThoughtLM(MistralPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_file="text.pdf", eps=0.2, eps2=0.5):
    c = canvas.Canvas(output_file, pagesize=letter)
    c.setFont("Courier", 8)
    x, y = 50, 750
    previous_text = ""
    current_text = ""
    for token_idx, reward in enumerate(token_rewards):
        current_text = tokenizer.decode(input_ids[: token_idx + 1])
        if current_text != previous_text:
            diff_text = current_text[len(previous_text) :]
            if "\n" in diff_text:
                lines = diff_text.split("\n")
                for line_idx, line in enumerate(lines):
                    if line_idx > 0:
                        x = 50
                        y -= 12
                    if abs(reward) < eps:
                        opacity = 0
                    elif abs(reward) > eps2:
                        opacity = 0.8
                    else:
                        opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
                    text_width = c.stringWidth(line)
                    if reward > 0:
                        highlight_color = HexColor("#4CCD99")
                    else:
                        highlight_color = HexColor("#FFC700")
                    highlight_color.alpha = opacity
                    c.setFillColor(highlight_color)
                    c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
                    c.setFillColor(HexColor("#000000"))
                    c.drawString(x, y, line)
                    x += text_width
            else:
                if abs(reward) < eps:
                    opacity = 0
                elif abs(reward) > eps2:
                    opacity = 0.8
                else:
                    opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
                text_width = c.stringWidth(diff_text)
                if reward > 0:
                    highlight_color = HexColor("#4CCD99")
                else:
                    highlight_color = HexColor("#FFC700")
                highlight_color.alpha = opacity
                c.setFillColor(highlight_color)
                c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
                c.setFillColor(HexColor("#000000"))
                c.drawString(x, y, diff_text)
                x += text_width
            if x > 550:
                x = 50
                y -= 12
            if y < 50:
                c.showPage()
                y = 750
                x = 50
            previous_text = current_text
    c.showPage()
    c.save()
    def __init__(self, config):
        super().__init__(config)
        self.model = MistralModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.max_thoughts = config.max_thoughts
        self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
        self.use_concat_talk_head = config.use_concat_talk_head
        self.use_shallow_talk = config.use_shallow_talk
        self.use_complex_talk_head = config.use_complex_talk_head
        self.use_weighted_talk_head = config.use_weighted_talk_head
        # the weighted head will output a single value, so it can't be passed to the lm head
        assert not (self.use_weighted_talk_head and self.use_shallow_talk)

        self.n_ahead = 1
        self.n_ahead_talk = 1
        self.n_passes = 1
        self.n_tokens_print = 1
        self.gradient_accumulation_steps = 1
        self.training_steps = 0
        self.tokenizer = None
        self.start_token_id = None
        self.end_token_id = None
        self.rm_initialized = False
        self.residual_talk_head = True
        self.thought_init_std_scale = 1e-2

        self.final_only_mode = False
        self.first_and_last_mode = True
        self.first_only = False
        self.original_loss_weight = 0.5

        self.cumulative_residual = False
        self.clever_residual = False
        self.skip_residual = False
        self.no_residual = True

        self.optimize_lm_head_only_at_start = False
        self.optimize_model_only_at_start = False

        if self.optimize_model_only_at_start:
            raise NotImplementedError
        self.train_only_thinking_embedding = False
        self.weighted_embeddings = False
        self.use_start_thought_token = True
        self.use_end_thought_token = True
        self.initialize_thought_embedding_to_normal = False
        self.initial_start_token = "---"
        self.initial_end_token = "---"
        self.output_logits_at_the_end = True
        self.gumbel_temperature = 0.001

        self.use_policy_loss = True
        self.include_policy_loss = True
        self.trice_mode = True
        self.remove_negative_rewards = True
        self.use_policy_loss_for_end_thought = True
        
        self.base_original_mode = False
        self.original_mode = False

        self.thought_prefix = "(Let's think step by step"
        self.tokenized_thought_prefix = None
        self.log_dict = defaultdict(int)
        self.eval_log_dict = defaultdict(int)
        self.print_final_only = True
        self.loss_mean = loss_mean
        self.all_rewards = []
        self.all_unreduced_losses = []
        self.kill_after = 100

        self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
        self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))

        self.policy_loss_beta = 1e6
        self.embedding_scale = 1e2
        self.reinforce_temperature = 3
        self.base_loss_beta = 1

        # Not used in the paper:
        self.use_thought_prefix = False
        self.use_reparam_for_thought_embeddings = False
        self.use_upper_triangular = False
        self.subtract_mean_reward = False
        self.comparison_mode = False
        self.gumbel_detach = True
    
        # For visualization
        self.eval_mode = False

        num_talk = 1
        talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
        if self.use_weighted_talk_head:
            talk_output_dim = 1
        else:
            talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size

        if not self.merged_lm_and_talk_heads:
            if self.use_complex_talk_head:
                self.talk_head = nn.ModuleList([nn.Sequential(
                    nn.Linear(talk_input_dim, config.hidden_size),
                    nn.ReLU(),
                    nn.Linear(config.hidden_size, config.hidden_size),
                    nn.ReLU(),
                    nn.Linear(config.hidden_size, talk_output_dim, bias=False)
                )])
            else:
                self.talk_head = nn.ModuleList([nn.Sequential(
                    nn.Linear(talk_input_dim, talk_output_dim, bias=False)
                )])

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @torch.no_grad()
    def infer(
        self,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        batch_size, seq_len = input_ids.shape

        # Save the original input_ids and attention_mask for later use
        original_input_ids = input_ids.clone()
        original_attention_mask = attention_mask.clone() if attention_mask is not None else None

        # Append the start thought token to the input sequence
        start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
        input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
        seq_len += 1

        # Update the attention mask
        if attention_mask is not None:
            attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)

        # Generate the continuation
        continuation_length = self.n_ahead - 2
        new_key_values = past_key_values
        
        start_time = time.time()
        for continuation_idx in range(continuation_length):
            outputs = self.model(
                input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=new_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            new_key_values = outputs.past_key_values

            hidden_states = outputs[0]

            logits = self.lm_head(hidden_states)
            logits = logits[:, -1, :]  # Only consider the last token

            # Apply Gumbel-Softmax to the logits
            next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
            next_token_id = torch.argmax(next_token_logits, dim=-1)

            # Append the generated token to the input sequence
            input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
            seq_len += 1

            # Update the attention mask
            if attention_mask is not None:
                attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)

        # Append the end thought token to the input sequence
        end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
        input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
        seq_len += 1

        # Update the attention mask
        if attention_mask is not None:
            attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)

        # Get the hidden states before and after the thought
        outputs_before = self.model(
            input_ids=original_input_ids,
            attention_mask=original_attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states_before = outputs_before[0][:, -1:, :]

        # two new tokens: last continuation token and end thought token
        outputs_after = self.model(
            input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=new_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states_after = outputs_after[0][:, -1:, :]

        # Apply the talk head to get the mixing weight
        mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))

        # Apply the mixing weight to the hidden states
        mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after

        # Apply the language model head to get the final logits
        logits = self.lm_head(mixed_hidden_states)
        return logits

    @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, MistralForCausalLM

        >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
        >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        log_dict = self.log_dict if self.training else self.eval_log_dict

        if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after:
            raise ValueError("Killed after")

        if not self.training:
            n_ahead_talk_to_restore = self.n_ahead_talk
            n_passes_to_restore = self.n_passes
            self.n_ahead_talk = 1
            self.n_passes = 1

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
        assert not (self.skip_residual and self.use_policy_loss)

        if self.tokenized_thought_prefix is None and self.use_thought_prefix:
            self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]

        def apply_head(head, states, detach=False):
            if detach:
                head_weight = head.weight.detach()
            else:
                head_weight = head.weight
            head_weight = head_weight.to(states.device)
            return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
    
        def idx_if_sequential(head, idx=0):
            if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
                return idx_if_sequential(head[idx], idx=idx)
            return head

        def none_repeat_interleave(x, n):
            if x is None:
                return x
            return x.repeat_interleave(n, dim=0)

        if self.n_passes > 1:
            input_ids = none_repeat_interleave(input_ids, self.n_passes)
            attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
            position_ids = none_repeat_interleave(position_ids, self.n_passes)
            inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
            labels = none_repeat_interleave(labels, self.n_passes)
            if past_key_values is not None:
                past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
        cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)

        self.tokenizer_has_start_thought_token = True
        self.tokenizer_has_end_thought_token = True
        if self.start_token_id is None:
            self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
            if self.start_token_id == 0:
                self.start_token_id = self.tokenizer.bos_token_id
                self.tokenizer_has_start_thought_token = False
            elif self.use_start_thought_token:
                # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
                base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
                if self.initialize_thought_embedding_to_normal:
                    self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
                else:
                    self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
                self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
        if self.end_token_id is None:
            self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
            if self.end_token_id == 0:
                self.end_token_id = self.tokenizer.eos_token_id
                self.tokenizer_has_end_thought_token = False
            elif self.use_end_thought_token:
                # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
                base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
                if self.initialize_thought_embedding_to_normal:
                    self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
                else:
                    self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
                self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)

        if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
            self.rm_initialized = True                        
            if not self.use_shallow_talk:
                head = self.talk_head[0]
                cur_head = head[-1] if isinstance(head, nn.Sequential) else head
                talk_input_dim = cur_head.weight.data.shape[1]
                talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
                cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
            else:
                # convert to identity transform
                def lambda_transform(cur_head):
                    if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
                        return torch.cat([
                        torch.eye(
                            cur_head.weight.data.shape[0],
                            device=cur_head.weight.device,
                            dtype=cur_head.weight.dtype
                        ),
                        torch.zeros(
                            cur_head.weight.data.shape[0],
                            cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
                            device=cur_head.weight.device,
                            dtype=cur_head.weight.dtype
                        )], dim=1)
                    return torch.eye(
                        cur_head.weight.data.shape[0],
                        device=cur_head.weight.device,
                        dtype=cur_head.weight.dtype
                    )
                if isinstance(self.talk_head[0], nn.Sequential):
                    for cur_head in self.talk_head[0]:
                        # if it has weights
                        if hasattr(cur_head, "weight"):
                            cur_head.weight.data = lambda_transform(cur_head)
                else:
                    self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])

        loss = None
        prev_rm_tokens = None
        cur_rm_tokens = None
        prev_rm_logits = None
        prev_sample_probs = None
        did_skip_sampling = None
        skip_sampling = None
        sample_probs = None
        hidden_states = None
        logits = None
        talk_kl_penalty = None
        rm_logits = None
        residual_logits = None
        probabilities_2d = None
        prev_probabilities_2d = None
        policy_reward = None
        logits_to_output = None
        batch_size, seq_len = input_ids.shape
        base_input_ids = input_ids.clone()
        loss_list = []
        dqn_loss_list = []
        sampled_token_history = []
        sample_probs_history = []
        action_loglikelihoods_list = []

        if self.use_end_thought_token or self.use_start_thought_token:
            if not self.use_reparam_for_thought_embeddings:
                start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale
                end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale
            else:
                start_embedding = self.start_embedding * self.embedding_scale
                end_embedding = self.end_embedding * self.embedding_scale
            base_embeddings = self.model.embed_tokens.weight
            if self.train_only_thinking_embedding:
                base_embeddings = base_embeddings.detach()
        # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
        for ahead_idx in range(fwd_iters):
            past_key_values_length = 0
            if past_key_values is not None:
                use_legacy_cache = not isinstance(past_key_values, Cache)
                if use_legacy_cache:
                    past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                past_key_values_length = past_key_values.get_usable_length(seq_len)

            if position_ids is None:
                device = input_ids.device if input_ids is not None else inputs_embeds.device
                position_ids = torch.arange(
                    past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
                )
                position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
            else:
                position_ids = position_ids.view(-1, seq_len).long()

            if inputs_embeds is None:
                contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
                contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
                contains_thought = contains_start or contains_end
                if contains_thought:
                    thought_id = self.start_token_id if contains_start else self.end_token_id
                    cur_thought_embedding = start_embedding if contains_start else end_embedding
                    if self.use_reparam_for_thought_embeddings:
                        inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
                        inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
                        if contains_start:
                            sampled_start = inputs_embeds.clone().detach()
                        if contains_end:
                            sampled_end = inputs_embeds.clone().detach()
                    else:
                        inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
                else:
                    with torch.set_grad_enabled(not self.train_only_thinking_embedding):
                        inputs_embeds = self.model.embed_tokens(input_ids)
            
            if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
                if attention_mask is None:
                    base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
                    base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
                    base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
                    attention_mask = base_attention_mask
                    breakpoint()
                elif attention_mask.dim() == 2:
                    if seq_len + past_key_values_length != attention_mask.shape[-1]:
                        breakpoint()
                        attention_mask = torch.cat(
                            [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
                            dim=-1
                        )
                    # # if the attention mask 
                    attention_mask = _prepare_4d_causal_attention_mask(
                        attention_mask,
                        (batch_size, seq_len),
                        inputs_embeds,
                        past_key_values_length,
                        sliding_window=self.config.sliding_window,
                    )

            outputs = self.model(
                # input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

            prev_hidden_states = hidden_states
            hidden_states = outputs[0]
            prev_rm_logits = rm_logits  # for policy gradient
            prev_rm_tokens = cur_rm_tokens  # for policy gradient

            if ahead_idx == 0:
                hidden_states_lm = hidden_states
                logits = self.lm_head(hidden_states_lm)
                base_hidden_states = hidden_states.clone()
                initial_loss_logits = logits.clone()
                if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
                    logits = logits.detach()
                    base_hidden_states = base_hidden_states.detach()
                if self.optimize_model_only_at_start:
                    hidden_states = hidden_states.detach()
                base_logits = logits.clone()
            else:
                talk_hidden_states = hidden_states
                if self.merged_lm_and_talk_heads:
                    assert self.no_residual
                    residual_logits = self.lm_head(hidden_states)
                    talk_hidden_states = hidden_states
                else:
                    if ahead_idx > self.n_ahead - 1:
                        cur_base_hidden = torch.cat([
                            base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
                            base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
                        ], dim=-2)
                    else:
                        cur_base_hidden = base_hidden_states

                    if self.use_concat_talk_head:
                        # concatenate the hidden states with the original hidden states
                        head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
                    else:
                        head_input_hidden_states = talk_hidden_states

                    residual_logits = self.talk_head[0](head_input_hidden_states)
                    if self.use_shallow_talk:
                        residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)                        
                    residual_logits = residual_logits.to(logits.device)
                    if self.use_weighted_talk_head:
                        # combine the cur_base_hidden with the talk_hidden_states according to the weighted head
                        residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
                        residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)

                assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
                if self.clever_residual:
                    if ahead_idx >= self.n_ahead - 1:
                        # get the logits shifted according to the current talk ahead
                        cur_base_logits = torch.cat([
                            base_logits[..., ahead_idx - self.n_ahead + 1:, :],
                            base_logits[..., :ahead_idx - self.n_ahead + 1, :]
                        ], dim=-2)
                        if self.optimize_lm_head_only_at_start:
                            cur_base_logits = cur_base_logits.detach()
                        logits = cur_base_logits + residual_logits
                    else:
                        logits += residual_logits / self.n_ahead
                elif self.cumulative_residual:
                    if self.residual_talk_head:
                        if ahead_idx < self.n_ahead:
                            logits += residual_logits
                        else:
                            # get the logits shifted according to the current talk ahead
                            cur_base_logits = torch.cat([
                                base_logits[..., ahead_idx - self.n_ahead + 1:, :],
                                base_logits[..., :ahead_idx - self.n_ahead + 1, :]
                            ], dim=-2)
                            if self.optimize_lm_head_only_at_start:
                                cur_base_logits = cur_base_logits.detach()
                            logits = cur_base_logits + residual_logits
                    else:
                        if ahead_idx < self.n_ahead:
                            logits += residual_logits
                        else:
                            logits = residual_logits
                elif self.skip_residual:
                    if ahead_idx >= self.n_ahead:
                        # get the logits shifted according to the current talk ahead
                        cur_base_logits = torch.cat([
                            base_logits[..., ahead_idx - self.n_ahead + 1:, :],
                            base_logits[..., :ahead_idx - self.n_ahead + 1, :]
                        ], dim=-2)
                        if self.optimize_lm_head_only_at_start:
                            cur_base_logits = cur_base_logits.detach()
                        logits = cur_base_logits
                elif self.no_residual:
                    logits = residual_logits
                else:
                    logits = base_logits + residual_logits

            attempted = False
            talk_loss_list = []
            if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
                loss = None
                attempted = True

                if labels is not None:
                    for shift_amount in range(self.n_ahead_talk):
                        # Shift so that tokens < n predict n
                        #  ab[cde]f
                        # abc[def]
                        if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
                            loss_logits = initial_loss_logits
                        else:
                            loss_logits = logits
                        shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
                        shift_labels = labels[..., 1 + shift_amount:].contiguous()
                        # Flatten the tokens
                        loss_fct = CrossEntropyLoss(reduction="none")
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
                        shift_labels = shift_labels.view(-1).clone()
                        # Enable model parallelism
                        shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
                        shift_labels = shift_labels.to(shift_logits.device)
                        loss = loss_fct(shift_logits, shift_labels)
                        if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
                            loss_list.append(loss)
                        talk_loss_list.append(nonzero_mean(loss).detach())
            
            if not attempted or self.comparison_mode:
                rm_hidden_states = hidden_states
                # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
                rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
                    
                # don't allow it to predict the thinking token
                if self.tokenizer_has_start_thought_token:                    
                    rm_logits[..., self.start_token_id] = -1e10
                if self.tokenizer_has_end_thought_token:
                    rm_logits[..., self.end_token_id] = -1e10
                probabilities = rm_logits
                if probabilities_2d is not None:
                    prev_probabilities_2d = probabilities_2d.clone()
                probabilities_2d = probabilities.view(-1, probabilities.size(-1))

                did_skip_sampling = skip_sampling
                skip_sampling = False
                if ahead_idx == 0 and self.use_start_thought_token:
                    override_token = self.start_token_id
                elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
                    override_token = self.tokenized_thought_prefix[..., ahead_idx]
                elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
                    override_token = self.end_token_id
                else:
                    override_token = None
                if override_token is not None and self.n_ahead > 1:
                    # always start with the start token
                    probabilities_2d = torch.zeros_like(probabilities_2d)
                    probabilities_2d[:, override_token] = 1.0
                    skip_sampling = True
                elif ahead_idx >= self.n_ahead - 1:
                    if labels is not None:  # we're in the talk phase
                        cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
                        # print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
                        shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
                        padding = torch.full_like(
                            labels[..., :cur_talk_n],
                            self.tokenizer.pad_token_id,
                            dtype=torch.long,
                            device=shift_labels.device
                        )
                        new_rm_tokens = torch.cat(
                            [shift_labels, padding],
                            dim=-1
                        )
                        # convert rm tokens to one-hot
                        probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
                        skip_sampling = True
                    else:
                        continue
                temperature = self.gumbel_temperature if self.training else 0.001
                prev_sample_probs = sample_probs
                sample_probs = probabilities_2d
                if ahead_idx < self.n_ahead - 1 and not skip_sampling:
                    probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
                    if self.gumbel_detach:
                        probabilities_2d = probabilities_2d.detach()
                sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
                # convert rm logits directly to embeddings
                contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
                contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
                contains_thought = contains_start or contains_end

                if not contains_thought:
                    with torch.set_grad_enabled(not self.train_only_thinking_embedding):
                        inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype))
                else:
                    thought_id = self.start_token_id if contains_start else self.end_token_id
                    cur_thought_embedding = start_embedding if contains_start else end_embedding
                    if self.use_reparam_for_thought_embeddings:
                        inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
                        inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
                        if contains_start:
                            sampled_start = inputs_embeds.clone().detach()
                        else:
                            sampled_end = inputs_embeds.clone().detach()
                    else:
                        inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
                        inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
                inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)

                if len(attention_mask.shape) == 2:
                    breakpoint()
                else:
                    original_attention = attention_mask[..., :attention_mask.shape[-2]]
                    if self.use_upper_triangular:
                        new_attention = original_attention
                    else:
                        original_attention = original_attention == attention_mask.max()
                        # because eye isn't implemented for BF16, we need to handle the case
                        if not attention_mask.dtype == torch.bfloat16:
                            new_attention = torch.eye(
                                seq_len, dtype=attention_mask.dtype, device=attention_mask.device
                            )
                        else:
                            new_attention = torch.eye(
                                seq_len, dtype=torch.float32, device=attention_mask.device
                            ).to(attention_mask.dtype)

                        new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
                        new_attention = new_attention * original_attention
                        new_attention[new_attention == 0] = attention_mask.min()
                        new_attention[new_attention == 1] = attention_mask.max()
                    attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
                past_key_values = outputs.past_key_values
                position_ids = position_ids + 1

                if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
                    # Shift so that tokens < n predict n
                    # logits: abcdef -> bcdef? -> cdef??
                    # labels: abcdef -> ?bcdef -> ??cdef
                    if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
                        loss_logits = initial_loss_logits
                    else:
                        loss_logits = logits
                    shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
                    shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
                    shift_labels = labels[..., shift_idx:].contiguous()
                    # Flatten the tokens
                    loss_fct = CrossEntropyLoss(reduction="none")
                    shift_logits = shift_logits.view(-1, self.config.vocab_size)
                    shift_labels = shift_labels.view(-1)
                    # Enable model parallelism
                    shift_labels = shift_labels.to(shift_logits.device)
                    # if shift_labels.min() == self.tokenizer.pad_token_id:
                    shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
                    unreduced_loss = loss_fct(shift_logits, shift_labels)
                    if torch.any(unreduced_loss != unreduced_loss):
                        raise ValueError("NaN loss")
                    unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
                    loss_list.append(unreduced_loss)


                    if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
                        # we treat the change in loss as the reward
                        previous_loss = loss_list[-2]
                        # for example, suppose n_ahead = 3 and n_ahead_talk = 2
                        # note that we end at self.n_ahead + self.n_ahead_talk - 2
                        # in this case, 5 - 2 = 3, so we end at ahead_idx = 3
                        # we also predict the next token at ahead_idx = 2
                        # when we get to ahead_idx = 2, we predict ahead
                        # so we shift by 1
                        # note that this is ahead_idx = n_ahead - 1
                        # when we get to ahead_idx = 3, we predict ahead
                        # so we shift by 2
                        # note that this is ahead_idx = n_ahead
                        if ahead_idx < self.n_ahead - 1:
                            shift_amount = 0
                            original_dqn_reward = (previous_loss - unreduced_loss).detach()
                            if self.first_and_last_mode:
                                original_dqn_reward = original_dqn_reward * 0.0
                        else:
                            # logits vs cur_policy_shift_logits
                            # let's look at rm_logits and prev_rm_logits
                            shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
                            # let's say shift_amount = 2
                            # abcdefg -> bcdefg? -> cdefg??
                            # logits = [a b]c d e f[g]
                            # labels = [a b c]d e f g
                            cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
                            cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
                            # Flatten the tokens
                            cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
                            cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
                            cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
                            # Enable model parallelism
                            cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
                            cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
                            cur_policy_reward_base_loss = loss_fct(
                                cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
                            ).reshape(logits.shape[0], -1)
                            original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
                                
                        if not did_skip_sampling:
                            nonzero_indices = prev_probabilities_2d.nonzero()
                            action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
                            action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
                            action_loglikelihoods_list.append(action_loglikelihoods_2d)
                        if policy_reward is None:
                            policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
                        else:
                            if self.n_ahead_talk > shift_amount:
                                added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
                            else:
                                added_reward = original_dqn_reward
                            policy_reward += added_reward
                    
                    if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2:
                        # only compute during the thinking phase
                        if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token):
                            # sampled_start, sampled_end
                            # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution
                            # with mean start_embedding[0] and standard deviation start_embedding[1]
                            if self.use_start_thought_token:
                                exp_start_std = torch.exp(start_embedding[1])
                                start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi)
                                start_loglikelihood = start_loglikelihood.mean(dim=-1)
                            if self.use_end_thought_token:
                                exp_end_std = torch.exp(end_embedding[1])
                                end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi)
                                end_loglikelihood = end_loglikelihood.mean(dim=-1)
                            # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings
                            if self.use_end_thought_token and self.use_policy_loss_for_end_thought:
                                action_loglikelihoods_list.append(end_loglikelihood)
                            if self.use_start_thought_token:
                                action_loglikelihoods_list.append(start_loglikelihood)                                

                        if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode:
                            with torch.no_grad():
                                # calculate the 0.75 quantile of the rewards
                                filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten()
                                filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id
                                filtered_tokens = filtered_tokens[filtered_tokens_mask]
                                filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()
                                filtered_rewards = filtered_rewards[filtered_tokens_mask]

                                abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten())
                                abs_reward_list = abs_reward_list[filtered_tokens_mask]
                                medium_quantile = np.quantile(abs_reward_list, 0.5)
                                upper_quantile = np.quantile(abs_reward_list, 0.95)

                                save_tokens_with_rewards_to_pdf(
                                    filtered_tokens,
                                    [0] + filtered_rewards.tolist(),
                                    self.tokenizer,
                                    output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf",
                                    eps=medium_quantile,
                                    eps2=upper_quantile,
                                )

                                def plot_kde(data, losses):
                                    sns.set(style="whitegrid")
                                    # Create the KDE plot
                                    sns.kdeplot(data, fill=True)
                                    # Set the plot title and labels
                                    plt.title("KDE Plot")
                                    plt.xlabel("Value")
                                    plt.ylabel("Density")
                                    # Save the plot
                                    plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
                                    # Close the plot
                                    plt.close()

                                    # Step 1: Create a base color palette
                                    base_colors = sns.color_palette("light:#5A9", n_colors=256)  # More colors for a smoother gradient
                                    base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors)
                                    log_norm = LogNorm(vmin=1e-3, vmax=10)

                                    sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0)
                                    # limit y to 0 to 25 and x to -1 to 1
                                    plt.xlim(-1, 1)
                                    plt.ylim(0, 25)
                                    plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
                                    plt.close()

                                self.all_rewards.extend(filtered_rewards)
                                self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy())
                                plot_kde(self.all_rewards, self.all_unreduced_losses)

                        for action_loglikelihoods_2d in action_loglikelihoods_list:
                            train_policy_reward = policy_reward

                            # discard rewards below the mean
                            if self.trice_mode and self.n_passes > 1:
                                batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
                                # average over the passes
                                train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
                                train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
                                
                            if self.subtract_mean_reward:
                                train_policy_reward = train_policy_reward - train_policy_reward.mean()
                            if self.remove_negative_rewards:
                                fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
                            else:
                                fixed_policy_reward = train_policy_reward.detach()
                            actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
                            if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
                                # This will only happen when we force the next token to be the end of thought token
                                break
                            dqn_loss_list.append(actor_loss.mean())

        if loss_list:
            if self.first_and_last_mode:
                loss = sum(
                    self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
                ) * (1 - self.original_loss_weight) / self.n_ahead_talk
                loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
                # Let's NaN out the others
                # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
                for i in range(1, len(loss_list) - self.n_ahead_talk):
                    loss_list[i] = loss_list[i] * math.nan
            elif self.first_only:
                loss = self.loss_mean(loss_list[0])
            elif self.final_only_mode:
                loss = sum(
                    self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
                ) / self.n_ahead_talk   
            else:
                loss = None
                for i in range(len(loss_list)):
                    cur_loss = self.loss_mean(loss_list[i])
                    if loss is not None:
                        loss = loss + cur_loss.to(loss.device)
                    else:
                        loss = cur_loss
                loss = loss / len(loss_list)
            
            loss = loss * self.base_loss_beta

        if dqn_loss_list:
            dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
            if self.include_policy_loss:
                if loss is not None:
                    loss += dqn_loss * self.policy_loss_beta
                else:
                    loss = dqn_loss * self.policy_loss_beta

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output
    
        base_log_dict = {
            f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
        }

        if loss is not None:
            base_log_dict["loss_train"] = loss.item()
        
        for loss_key, loss_val in base_log_dict.items():
            log_dict[loss_key] += loss_val / self.n_tokens_print
                
        if self.use_policy_loss and policy_reward is not None:
            log_dict["policy_loss"] += dqn_loss / self.n_tokens_print
            log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print

        if not loss_list:
            if loss is not None:
                log_dict["loss_0"] += loss / self.n_tokens_print
        else:
            log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print
            log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print

        # also log relative losses to loss_0
        if loss_list:
            for i in range(len(loss_list)):
                talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1)
                if not talk_loss_list:
                    cur_talk_loss = nonzero_mean(loss_list[0])
                else:
                    cur_talk_loss = talk_loss_list[talk_idx]
                log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
        if self.training:
            self.training_steps += 1
        try:
            # if self.training_steps % (self.gradient_accumulation_steps * 256) == 0:
            if self.wandb_enabled:
                if self.training_steps % (self.n_tokens_print) == 0 or not self.training:# and "0" in str(loss.device):
                    if not self.training:
                        new_log_dict = {}
                        for key in list(log_dict.keys()):
                            new_log_dict["eval_" + key] = log_dict[key]
                        log_dict = new_log_dict
                    log_dict["training_steps"] = self.training_steps 
                    log_dict["batch_size"] = batch_size
                    log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
                    if self.n_ahead > 1:
                        log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps
                    else: # There's no overhead for talk tokens if there's no thinking
                        log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
                    # remove all nans
                    for key in list(log_dict.keys()):
                        if log_dict[key] != log_dict[key]:
                            del log_dict[key]
                    if self.training:
                        wandb.log(log_dict)
                    if self.training:
                        self.log_dict = defaultdict(int)
                    else:
                        self.eval_log_dict = defaultdict(int)
        except Exception as e:
            pass

        if not self.training:
            self.n_ahead_talk = n_ahead_talk_to_restore
            self.n_passes = n_passes_to_restore
        return CausalLMOutputWithPast(
            loss=loss if loss is not None else None,
            logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past