|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers.tokenization_utils_base import TextInput
|
|
import os
|
|
import math
|
|
from typing import List, Optional, Tuple, Union
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
import torch.nn.functional as F
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging,add_start_docstrings,add_start_docstrings_to_model_forward,replace_return_docstrings
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.cache_utils import Cache,DynamicCache, SlidingWindowCache, StaticCache
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast,CausalLMOutputWithPast,SequenceClassifierOutputWithPast,TokenClassifierOutput,QuestionAnsweringModelOutput,MoeCausalLMOutputWithPast,MoeModelOutputWithPast
|
|
from tokenizers import processors
|
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
|
from transformers.utils import is_sentencepiece_available, logging
|
|
from transformers.utils.versions import require_version
|
|
from shutil import copyfile
|
|
from collections import defaultdict
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
|
import sentencepiece as spm
|
|
from transformers.convert_slow_tokenizer import import_protobuf
|
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
|
from transformers.utils import logging
|
|
|
|
MISTRAL_ATTENTION_CLASSES = {
|
|
"eager": MistralAttention,"greedy" : MistralSdpaAttention
|
|
}
|
|
MIXTRAL_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`MixtralConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
MISTRAL_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance;
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
|
|
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
|
|
}
|
|
MISTRAL_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`MistralConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
_CONFIG_FOR_DOC = "MistralStarConfig"
|
|
logger = logging.get_logger(__name__)
|
|
SPIECE_UNDERLINE = "▁"
|
|
require_version("tokenizers>=0.13.3")
|
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
|
|
|
|
B_INST, E_INST = "[INST]", "[/INST]"
|
|
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
|
|
|
|
|
DEFAULT_SYSTEM_PROMPT = """you are the world archive of knowledge and a friendly helpful artificial intelligent being:
|
|
consider if the current task denotes the creation of a function in python that can be saved and re-used for a future task,
|
|
if created, return the artifact to the user, in the response, or if access is given to be save as a file on the user system:
|
|
Be flirtatious and joyfull, always willing to help or engage in conversation or express an opinion or sentiment:
|
|
answer all questions indepth supply and helpfull references where possible; """
|
|
|
|
|
|
|
|
|
|
|
|
class MistralTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
|
no padding token in the original model.
|
|
|
|
Args:
|
|
vocab_file (`str`):
|
|
Path to the vocabulary file.
|
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
|
The end of sequence token.
|
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
|
attention mechanisms or loss computation.
|
|
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
|
to set:
|
|
|
|
- `enable_sampling`: Enable subword regularization.
|
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
|
|
|
- `nbest_size = {0,1}`: No sampling is performed.
|
|
- `nbest_size > 1`: samples from the nbest_size results.
|
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
|
using forward-filtering-and-backward-sampling algorithm.
|
|
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
|
BPE-dropout.
|
|
|
|
add_bos_token (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to add an `bos_token` at the start of sequences.
|
|
add_eos_token (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to add an `eos_token` at the end of sequences.
|
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
|
extra spaces.
|
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the default system prompt for Llama should be used.
|
|
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to add spaces between special tokens.
|
|
legacy (`bool`, *optional*):
|
|
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
|
|
and #25224 which includes fixes to properly handle tokens that appear after special tokens.
|
|
Make sure to also set `from_slow` to `True`.
|
|
A simple example:
|
|
|
|
- `legacy=True`:
|
|
```python
|
|
>>> from transformers import LlamaTokenizerFast
|
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True)
|
|
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.'
|
|
[1, 15043, 29871, 1, 869]
|
|
```
|
|
- `legacy=False`:
|
|
```python
|
|
>>> from transformers import LlamaTokenizerFast
|
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True)
|
|
>>> tokenizer.encode("Hello <s>.") # 29889 is '.'
|
|
[1, 15043, 29871, 1, 29889]
|
|
```
|
|
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
|
add_prefix_space (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
|
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
unk_token="<unk>",
|
|
bos_token="<s>",
|
|
eos_token="</s>",
|
|
pad_token=None,
|
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
|
add_bos_token=True,
|
|
add_eos_token=False,
|
|
clean_up_tokenization_spaces=False,
|
|
use_default_system_prompt=False,
|
|
spaces_between_special_tokens=False,
|
|
legacy=None,
|
|
add_prefix_space=True,
|
|
**kwargs,
|
|
):
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
|
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
|
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
|
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
|
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
|
|
|
if legacy is None:
|
|
logger.warning_once(
|
|
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
|
" means, and thoroughly read the reason why this was added as explained in"
|
|
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file"
|
|
" you can ignore this message"
|
|
)
|
|
legacy = True
|
|
|
|
self.legacy = legacy
|
|
self.vocab_file = vocab_file
|
|
self.add_bos_token = add_bos_token
|
|
self.add_eos_token = add_eos_token
|
|
self.use_default_system_prompt = use_default_system_prompt
|
|
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
|
self.add_prefix_space = add_prefix_space
|
|
|
|
super().__init__(
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
unk_token=unk_token,
|
|
pad_token=pad_token,
|
|
add_bos_token=add_bos_token,
|
|
add_eos_token=add_eos_token,
|
|
sp_model_kwargs=self.sp_model_kwargs,
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
use_default_system_prompt=use_default_system_prompt,
|
|
spaces_between_special_tokens=spaces_between_special_tokens,
|
|
legacy=legacy,
|
|
add_prefix_space=add_prefix_space,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def unk_token_length(self):
|
|
return len(self.sp_model.encode(str(self.unk_token)))
|
|
|
|
|
|
def get_spm_processor(self, from_slow=False):
|
|
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
|
if self.legacy or from_slow:
|
|
tokenizer.Load(self.vocab_file)
|
|
return tokenizer
|
|
|
|
with open(self.vocab_file, "rb") as f:
|
|
sp_model = f.read()
|
|
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
|
model = model_pb2.ModelProto.FromString(sp_model)
|
|
normalizer_spec = model_pb2.NormalizerSpec()
|
|
normalizer_spec.add_dummy_prefix = False
|
|
model.normalizer_spec.MergeFrom(normalizer_spec)
|
|
sp_model = model.SerializeToString()
|
|
tokenizer.LoadFromSerializedProto(sp_model)
|
|
return tokenizer
|
|
|
|
def __getstate__(self):
|
|
state = self.__dict__.copy()
|
|
state["sp_model"] = None
|
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
|
return state
|
|
|
|
def __setstate__(self, d):
|
|
self.__dict__ = d
|
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
"""Returns vocab size"""
|
|
return self.sp_model.get_piece_size()
|
|
|
|
def get_vocab(self):
|
|
"""Returns vocab as a dict"""
|
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
|
|
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
|
"""
|
|
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
|
first token is special.
|
|
"""
|
|
if self.legacy or len(text) == 0:
|
|
return super().tokenize(text, **kwargs)
|
|
|
|
text = text.replace(SPIECE_UNDERLINE, " ")
|
|
if self.add_prefix_space:
|
|
text = SPIECE_UNDERLINE + text
|
|
|
|
tokens = super().tokenize(text, **kwargs)
|
|
|
|
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
|
tokens = tokens[1:]
|
|
return tokens
|
|
|
|
|
|
def _tokenize(self, text, **kwargs):
|
|
"""
|
|
Returns a tokenized string.
|
|
|
|
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
|
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
|
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
|
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
|
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
|
"""
|
|
tokens = self.sp_model.encode(text, out_type=str)
|
|
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
|
return tokens
|
|
|
|
|
|
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
|
|
|
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
"""Converts a token (str) in an id using the vocab."""
|
|
return self.sp_model.piece_to_id(token)
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
token = self.sp_model.IdToPiece(index)
|
|
return token
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
"""Converts a sequence of tokens (string) in a single string."""
|
|
|
|
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
|
tokens[0] = tokens[0][1:]
|
|
|
|
current_sub_tokens = []
|
|
out_string = ""
|
|
prev_is_special = False
|
|
for i, token in enumerate(tokens):
|
|
|
|
if token in self.all_special_tokens:
|
|
if not prev_is_special and i != 0 and self.legacy:
|
|
out_string += " "
|
|
out_string += self.sp_model.decode(current_sub_tokens) + token
|
|
prev_is_special = True
|
|
current_sub_tokens = []
|
|
else:
|
|
if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE):
|
|
out_string += " "
|
|
current_sub_tokens.append(token)
|
|
prev_is_special = False
|
|
out_string += self.sp_model.decode(current_sub_tokens)
|
|
return out_string
|
|
|
|
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
"""
|
|
Save the vocabulary and special tokens file to a directory.
|
|
|
|
Args:
|
|
save_directory (`str`):
|
|
The directory in which to save the vocabulary.
|
|
|
|
Returns:
|
|
`Tuple(str)`: Paths to the files saved.
|
|
"""
|
|
if not os.path.isdir(save_directory):
|
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
|
return
|
|
out_vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
elif not os.path.isfile(self.vocab_file):
|
|
with open(out_vocab_file, "wb") as fi:
|
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
|
fi.write(content_spiece_model)
|
|
|
|
return (out_vocab_file,)
|
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id
|
|
|
|
if token_ids_1 is not None:
|
|
output = output + bos_token_id + token_ids_1 + eos_token_id
|
|
|
|
return output
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
if already_has_special_tokens:
|
|
return super().get_special_tokens_mask(
|
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
)
|
|
|
|
bos_token_id = [1] if self.add_bos_token else []
|
|
eos_token_id = [1] if self.add_eos_token else []
|
|
|
|
if token_ids_1 is None:
|
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
|
return (
|
|
bos_token_id
|
|
+ ([0] * len(token_ids_0))
|
|
+ eos_token_id
|
|
+ bos_token_id
|
|
+ ([0] * len(token_ids_1))
|
|
+ eos_token_id
|
|
)
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
|
sequence pair mask has the following format:
|
|
|
|
```
|
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
|
| first sequence | second sequence |
|
|
```
|
|
|
|
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
|
|
|
Args:
|
|
token_ids_0 (`List[int]`):
|
|
List of ids.
|
|
token_ids_1 (`List[int]`, *optional*):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
|
"""
|
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
|
|
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
|
|
|
if token_ids_1 is not None:
|
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
|
|
|
return output
|
|
|
|
@property
|
|
def default_chat_template(self):
|
|
"""
|
|
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
|
|
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
|
|
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
|
|
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
|
|
results in an unusual token ordering when it is present. This template should definitely be changed if you wish
|
|
to fine-tune a model with more flexible role ordering!
|
|
|
|
The output should look something like:
|
|
|
|
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
|
|
<bos>[INST] Prompt [/INST]
|
|
|
|
The reference for this chat template is [this code
|
|
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
|
|
in the original repository.
|
|
"""
|
|
template = (
|
|
"{% if messages[0]['role'] == 'system' %}"
|
|
"{% set loop_messages = messages[1:] %}"
|
|
"{% set system_message = messages[0]['content'] %}"
|
|
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
|
|
"{% set loop_messages = messages %}"
|
|
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
|
|
"{% else %}"
|
|
"{% set loop_messages = messages %}"
|
|
"{% set system_message = false %}"
|
|
"{% endif %}"
|
|
"{% for message in loop_messages %}"
|
|
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
|
|
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
|
|
"{% endif %}"
|
|
"{% if loop.index0 == 0 and system_message != false %}"
|
|
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
|
|
"{% else %}"
|
|
"{% set content = message['content'] %}"
|
|
"{% endif %}"
|
|
"{% if message['role'] == 'user' %}"
|
|
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
|
|
"{% elif message['role'] == 'system' %}"
|
|
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
|
|
"{% elif message['role'] == 'assistant' %}"
|
|
"{{ ' ' + content.strip() + ' ' + eos_token }}"
|
|
"{% endif %}"
|
|
"{% endfor %}"
|
|
)
|
|
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
|
|
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
|
|
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
|
|
|
|
return template
|
|
class MistralTokenizerFast(PreTrainedTokenizerFast):
|
|
"""
|
|
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
|
|
|
|
This uses notably ByteFallback and no normalization.
|
|
|
|
```python
|
|
>>> from transformers import LlamaTokenizerFast
|
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
|
|
>>> tokenizer.encode("Hello this is a test")
|
|
[1, 15043, 445, 338, 263, 1243]
|
|
```
|
|
|
|
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
|
|
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
|
|
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
|
|
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
|
|
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
|
refer to this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (`str`, *optional*):
|
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
|
|
contains the vocabulary necessary to instantiate a tokenizer.
|
|
tokenizer_file (`str`, *optional*):
|
|
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
|
contains everything needed to load the tokenizer.
|
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
|
extra spaces.
|
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
|
The end of sequence token.
|
|
add_bos_token (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to add an `bos_token` at the start of sequences.
|
|
add_eos_token (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to add an `eos_token` at the end of sequences.
|
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the default system prompt for Llama should be used
|
|
legacy (`bool`, *optional*):
|
|
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
|
|
and #25224 which includes fixes to properly handle tokens that appear after special tokens.
|
|
Make sure to also set `from_slow` to `True`.
|
|
A simple example:
|
|
|
|
- `legacy=True`:
|
|
```python
|
|
>>> from transformers import LlamaTokenizerFast
|
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True)
|
|
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.'
|
|
[1, 15043, 29871, 1, 869]
|
|
```
|
|
- `legacy=False`:
|
|
```python
|
|
>>> from transformers import LlamaTokenizerFast
|
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True)
|
|
>>> tokenizer.encode("Hello <s>.") # 29889 is '.'
|
|
[1, 15043, 29871, 1, 29889]
|
|
```
|
|
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
|
add_prefix_space (`bool`, *optional*):
|
|
Whether or not the tokenizer should automatically add a prefix space
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
slow_tokenizer_class = MistralTokenizer
|
|
padding_side = "left"
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file=None,
|
|
tokenizer_file=None,
|
|
clean_up_tokenization_spaces=False,
|
|
unk_token="<unk>",
|
|
bos_token="<s>",
|
|
eos_token="</s>",
|
|
add_bos_token=True,
|
|
add_eos_token=False,
|
|
use_default_system_prompt=False,
|
|
legacy=None,
|
|
add_prefix_space=None,
|
|
**kwargs,
|
|
):
|
|
if legacy is None:
|
|
logger.warning_once(
|
|
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
|
" means, and thoroughly read the reason why this was added as explained in"
|
|
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file"
|
|
" you can ignore this message."
|
|
)
|
|
legacy = True
|
|
self.legacy = legacy
|
|
|
|
if add_prefix_space is not None:
|
|
kwargs["from_slow"] = True
|
|
|
|
super().__init__(
|
|
vocab_file=vocab_file,
|
|
tokenizer_file=tokenizer_file,
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
unk_token=unk_token,
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
add_bos_token=add_bos_token,
|
|
add_eos_token=add_eos_token,
|
|
use_default_system_prompt=use_default_system_prompt,
|
|
add_prefix_space=add_prefix_space,
|
|
legacy=legacy,
|
|
**kwargs,
|
|
)
|
|
self._add_bos_token = add_bos_token
|
|
self._add_eos_token = add_eos_token
|
|
self.update_post_processor()
|
|
self.use_default_system_prompt = use_default_system_prompt
|
|
self.vocab_file = vocab_file
|
|
|
|
@property
|
|
def can_save_slow_tokenizer(self) -> bool:
|
|
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
|
|
|
def update_post_processor(self):
|
|
"""
|
|
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
|
"""
|
|
bos = self.bos_token
|
|
bos_token_id = self.bos_token_id
|
|
if bos is None and self.add_bos_token:
|
|
raise ValueError("add_bos_token = True but bos_token = None")
|
|
|
|
eos = self.eos_token
|
|
eos_token_id = self.eos_token_id
|
|
if eos is None and self.add_eos_token:
|
|
raise ValueError("add_eos_token = True but eos_token = None")
|
|
|
|
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
|
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
|
|
|
special_tokens = []
|
|
if self.add_bos_token:
|
|
special_tokens.append((bos, bos_token_id))
|
|
if self.add_eos_token:
|
|
special_tokens.append((eos, eos_token_id))
|
|
self._tokenizer.post_processor = processors.TemplateProcessing(
|
|
single=single, pair=pair, special_tokens=special_tokens
|
|
)
|
|
|
|
@property
|
|
def add_eos_token(self):
|
|
return self._add_eos_token
|
|
|
|
@property
|
|
def add_bos_token(self):
|
|
return self._add_bos_token
|
|
|
|
@add_eos_token.setter
|
|
def add_eos_token(self, value):
|
|
self._add_eos_token = value
|
|
self.update_post_processor()
|
|
|
|
@add_bos_token.setter
|
|
def add_bos_token(self, value):
|
|
self._add_bos_token = value
|
|
self.update_post_processor()
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not self.can_save_slow_tokenizer:
|
|
raise ValueError(
|
|
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
|
"tokenizer."
|
|
)
|
|
|
|
if not os.path.isdir(save_directory):
|
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
|
return
|
|
out_vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
|
|
return (out_vocab_file,)
|
|
|
|
@property
|
|
|
|
def default_chat_template(self):
|
|
"""
|
|
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
|
|
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
|
|
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
|
|
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
|
|
results in an unusual token ordering when it is present. This template should definitely be changed if you wish
|
|
to fine-tune a model with more flexible role ordering!
|
|
|
|
The output should look something like:
|
|
|
|
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
|
|
<bos>[INST] Prompt [/INST]
|
|
|
|
The reference for this chat template is [this code
|
|
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
|
|
in the original repository.
|
|
"""
|
|
template = (
|
|
"{% if messages[0]['role'] == 'system' %}"
|
|
"{% set loop_messages = messages[1:] %}"
|
|
"{% set system_message = messages[0]['content'] %}"
|
|
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
|
|
"{% set loop_messages = messages %}"
|
|
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
|
|
"{% else %}"
|
|
"{% set loop_messages = messages %}"
|
|
"{% set system_message = false %}"
|
|
"{% endif %}"
|
|
"{% for message in loop_messages %}"
|
|
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
|
|
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
|
|
"{% endif %}"
|
|
"{% if loop.index0 == 0 and system_message != false %}"
|
|
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
|
|
"{% else %}"
|
|
"{% set content = message['content'] %}"
|
|
"{% endif %}"
|
|
"{% if message['role'] == 'user' %}"
|
|
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
|
|
"{% elif message['role'] == 'system' %}"
|
|
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
|
|
"{% elif message['role'] == 'assistant' %}"
|
|
"{{ ' ' + content.strip() + ' ' + eos_token }}"
|
|
"{% endif %}"
|
|
"{% endfor %}"
|
|
)
|
|
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
|
|
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
|
|
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
|
|
|
|
return template
|
|
|
|
|
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id
|
|
|
|
if token_ids_1 is not None:
|
|
output = output + bos_token_id + token_ids_1 + eos_token_id
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def nonzero_mean(x, axis=None):
|
|
if axis is not None:
|
|
return x.sum(axis) / (x != 0).sum(axis)
|
|
return x.sum() / (x != 0).sum()
|
|
def loss_mean(x):
|
|
return x.sum() / (x != 0).sum()
|
|
|
|
def _get_unpad_data(attention_mask):
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
|
return (
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
|
|
Args:
|
|
q (`torch.Tensor`): The query tensor.
|
|
k (`torch.Tensor`): The key tensor.
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
position_ids (`torch.Tensor`, *optional*):
|
|
Deprecated and unused.
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
Returns:
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
"""
|
|
cos = cos.unsqueeze(unsqueeze_dim)
|
|
sin = sin.unsqueeze(unsqueeze_dim)
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
def load_balancing_loss_func(
|
|
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
|
) -> float:
|
|
r"""
|
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
|
experts is too unbalanced.
|
|
|
|
Args:
|
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
|
shape [batch_size X sequence_length, num_experts].
|
|
attention_mask (`torch.Tensor`, None):
|
|
The attention_mask used in forward function
|
|
shape [batch_size X sequence_length] if not None.
|
|
num_experts (`int`, *optional*):
|
|
Number of experts
|
|
|
|
Returns:
|
|
The auxiliary loss.
|
|
"""
|
|
if gate_logits is None or not isinstance(gate_logits, tuple):
|
|
return 0
|
|
|
|
if isinstance(gate_logits, tuple):
|
|
compute_device = gate_logits[0].device
|
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
|
|
|
if attention_mask is None:
|
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
|
else:
|
|
batch_size, sequence_length = attention_mask.shape
|
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
|
|
|
|
|
expert_attention_mask = (
|
|
attention_mask[None, :, :, None, None]
|
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
|
.reshape(-1, top_k, num_experts)
|
|
.to(compute_device)
|
|
)
|
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
|
expert_attention_mask, dim=0
|
|
)
|
|
|
|
|
|
router_per_expert_attention_mask = (
|
|
attention_mask[None, :, :, None]
|
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
|
.reshape(-1, num_experts)
|
|
.to(compute_device)
|
|
)
|
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
|
router_per_expert_attention_mask, dim=0
|
|
)
|
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
|
return overall_loss * num_experts
|
|
|
|
|
|
|
|
class MistralRotaryEmbedding(nn.Module):
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
@torch.no_grad()
|
|
|
|
def forward(self, x, position_ids):
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
|
|
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()
|
|
sin = emb.sin()
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
|
|
class MistralRMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
MistralRMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
class MistralAttention(nn.Module):
|
|
"""
|
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
|
and "Generating Long Sequences with Sparse Transformers".
|
|
"""
|
|
|
|
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
if layer_idx is None:
|
|
logger.warning_once(
|
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
|
"when creating this class."
|
|
)
|
|
|
|
self.attention_dropout = config.attention_dropout
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.rope_theta = config.rope_theta
|
|
self.is_causal = True
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads})."
|
|
)
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
|
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
|
|
|
self.rotary_emb = MistralRotaryEmbedding(
|
|
self.head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attention_mask is not None:
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
attn_weights = attn_weights + causal_mask
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
attn_output = attn_output.view(bsz, q_len, -1)
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
class MistralSdpaAttention(MistralAttention):
|
|
"""
|
|
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
|
SDPA API.
|
|
"""
|
|
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if output_attentions:
|
|
|
|
logger.warning_once(
|
|
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
return super().forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
causal_mask = attention_mask
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None:
|
|
query_states = query_states.contiguous()
|
|
key_states = key_states.contiguous()
|
|
value_states = value_states.contiguous()
|
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_mask=causal_mask,
|
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
is_causal=is_causal,
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.view(bsz, q_len, -1)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, None, past_key_value
|
|
class MistralMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size = config.intermediate_size
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, hidden_state):
|
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
|
|
|
class MistralDecoderLayer(nn.Module):
|
|
def __init__(self, config: MistralConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
|
|
|
self.mlp = MistralMLP(config)
|
|
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*):
|
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
|
query_sequence_length, key_sequence_length)` if default attention is used.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence
|
|
kwargs (`dict`, *optional*):
|
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
|
into the model
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
**kwargs,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
config_class = MistralStarConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["MistralDecoderLayer"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_cache_class = True
|
|
_supports_static_cache = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
class MixtralBlockSparseTop2MLP(nn.Module):
|
|
def __init__(self, config: MixtralConfig):
|
|
super().__init__()
|
|
self.ffn_dim = config.intermediate_size
|
|
self.hidden_dim = config.hidden_size
|
|
|
|
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
|
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
|
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
|
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, hidden_states):
|
|
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
|
current_hidden_states = self.w2(current_hidden_states)
|
|
return current_hidden_states
|
|
class MixtralSparseMoeBlock(nn.Module):
|
|
"""
|
|
This implementation is
|
|
strictly equivalent to standard MoE with full capacity (no
|
|
dropped tokens). It's faster since it formulates MoE operations
|
|
in terms of block-sparse operations to accomodate imbalanced
|
|
assignments of tokens to experts, whereas standard MoE either
|
|
(1) drop tokens at the cost of reduced performance or (2) set
|
|
capacity factor to number of experts and thus waste computation
|
|
and memory on padding.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.hidden_dim = config.hidden_size
|
|
self.ffn_dim = config.intermediate_size
|
|
self.num_experts = config.num_local_experts
|
|
self.top_k = config.num_experts_per_tok
|
|
|
|
|
|
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
|
|
|
self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
|
|
|
|
|
self.jitter_noise = config.router_jitter_noise
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
""" """
|
|
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
|
if self.training and self.jitter_noise > 0:
|
|
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
router_logits = self.gate(hidden_states)
|
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype)
|
|
|
|
final_hidden_states = torch.zeros(
|
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
|
)
|
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
|
|
|
|
|
for expert_idx in range(self.num_experts):
|
|
expert_layer = self.experts[expert_idx]
|
|
idx, top_x = torch.where(expert_mask[expert_idx])
|
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
|
return final_hidden_states, router_logits
|
|
class MixtralDecoderLayer(nn.Module):
|
|
def __init__(self, config: MixtralConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
|
self.mlp = MistralMLP(config)
|
|
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
|
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
output_router_logits: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
|
`(batch, sequence_length)` where padding elements are indicated by 0.
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
output_router_logits (`bool`, *optional*):
|
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
|
should not be returned during inference.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
kwargs (`dict`, *optional*):
|
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
|
into the model
|
|
"""
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
if output_router_logits:
|
|
outputs += (router_logits,)
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
class MistralStarConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
|
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
|
|
|
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`MistralModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 14336):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 8):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
|
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
|
allows sequence of up to 4096*32 tokens.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*):
|
|
The id of the padding token.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
The id of the "beginning-of-sequence" token.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
The id of the "end-of-sequence" token.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether the model's input and output word embeddings should be tied.
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
sliding_window (`int`, *optional*, defaults to 4096):
|
|
Sliding window attention window size. If not specified, will default to `4096`.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
|
|
```python
|
|
>>> from transformers import MistralModel, MistralConfig
|
|
|
|
>>> # Initializing a Mistral 7B style configuration
|
|
>>> configuration = MistralConfig()
|
|
|
|
>>> # Initializing a model from the Mistral 7B style configuration
|
|
>>> model = MistralModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "mistral_star"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32000,
|
|
hidden_size=4096,
|
|
intermediate_size=14336,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=8,
|
|
hidden_act="silu",
|
|
max_position_embeddings=4096 * 32,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
tie_word_embeddings=False,
|
|
rope_theta=10000.0,
|
|
sliding_window=4096,
|
|
attention_dropout=0.0,
|
|
max_thoughts=16,
|
|
thought_length = 10,
|
|
merged_talk_heads=True,
|
|
merged_lm_and_talk_heads=False,
|
|
merged_lm_and_think_heads=True,
|
|
use_concat_talk_head=True,
|
|
use_shallow_think=True,
|
|
use_shallow_talk=False,
|
|
use_complex_think_head=False,
|
|
use_complex_talk_head=True,
|
|
use_weighted_talk_head=True,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.sliding_window = sliding_window
|
|
|
|
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.attention_dropout = attention_dropout
|
|
self.max_thoughts = max_thoughts
|
|
self.thought_length = thought_length
|
|
self.merged_talk_heads = merged_talk_heads
|
|
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
|
|
self.merged_lm_and_think_heads = merged_lm_and_think_heads
|
|
self.use_concat_talk_head = use_concat_talk_head
|
|
self.use_shallow_think = use_shallow_think
|
|
self.use_shallow_talk = use_shallow_talk
|
|
self.use_complex_think_head = use_complex_think_head
|
|
self.use_complex_talk_head = use_complex_talk_head
|
|
self.use_weighted_talk_head = use_weighted_talk_head
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
@add_start_docstrings(
|
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
|
MISTRAL_START_DOCSTRING,
|
|
)
|
|
class MistralPreTrainedModel(PreTrainedModel):
|
|
config_class = MistralConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["MistralDecoderLayer"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = False
|
|
_supports_sdpa = True
|
|
_supports_cache_class = True
|
|
_supports_static_cache = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
@add_start_docstrings(
|
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
|
MISTRAL_START_DOCSTRING,
|
|
)
|
|
class MistralStarModel(MistralPreTrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
|
|
|
Args:
|
|
config: MistralConfig
|
|
"""
|
|
|
|
def __init__(self, config: MistralStarConfig):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList(
|
|
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
self._attn_implementation = config._attn_implementation
|
|
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError(
|
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
return_legacy_cache = False
|
|
if use_cache and not isinstance(past_key_values, Cache):
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
return_legacy_cache = True
|
|
logger.warning_once(
|
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
|
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
|
)
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
cache_position = torch.arange(
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
)
|
|
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
causal_mask = self._update_causal_mask(
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if return_legacy_cache:
|
|
next_cache = next_cache.to_legacy_cache()
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
def _update_causal_mask(
|
|
self,
|
|
attention_mask: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
cache_position: torch.Tensor,
|
|
past_key_values: Cache,
|
|
use_cache: bool,
|
|
output_attentions: bool,
|
|
):
|
|
|
|
|
|
|
|
|
|
|
|
if self._attn_implementation == "flash_attention_2":
|
|
if attention_mask is not None and use_cache:
|
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
|
if is_padding_right:
|
|
raise ValueError(
|
|
"You are attempting to perform batched generation with padding_side='right'"
|
|
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
|
)
|
|
if attention_mask is not None and 0.0 in attention_mask:
|
|
return attention_mask
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_seen_tokens = cache_position[0] if past_key_values is not None else 0
|
|
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
|
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and not (using_static_cache or using_sliding_window_cache)
|
|
and not output_attentions
|
|
):
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
|
attention_mask,
|
|
inputs_embeds=input_tensor,
|
|
past_key_values_length=past_seen_tokens,
|
|
sliding_window=self.config.sliding_window,
|
|
is_training=self.training,
|
|
):
|
|
return None
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device
|
|
min_dtype = torch.finfo(dtype).min
|
|
sequence_length = input_tensor.shape[1]
|
|
|
|
if using_sliding_window_cache:
|
|
target_length = max(sequence_length, self.config.sliding_window)
|
|
|
|
elif using_static_cache:
|
|
target_length = past_key_values.get_max_length()
|
|
|
|
else:
|
|
target_length = (
|
|
attention_mask.shape[-1]
|
|
if isinstance(attention_mask, torch.Tensor)
|
|
else past_seen_tokens + sequence_length + 1
|
|
)
|
|
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
|
|
if attention_mask.max() != 0:
|
|
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
|
causal_mask = attention_mask
|
|
else:
|
|
causal_mask = torch.full(
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
|
)
|
|
exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
|
if self.config.sliding_window is not None:
|
|
if not using_sliding_window_cache or sequence_length > self.config.sliding_window:
|
|
exclude_mask.bitwise_or_(
|
|
torch.arange(target_length, device=device)
|
|
<= (cache_position.reshape(-1, 1) - self.config.sliding_window)
|
|
)
|
|
causal_mask *= exclude_mask
|
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask.clone()
|
|
if attention_mask.dim() == 2:
|
|
mask_length = attention_mask.shape[-1]
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
|
padding_mask = padding_mask == 0
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
padding_mask, min_dtype
|
|
)
|
|
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and attention_mask is not None
|
|
and attention_mask.device.type == "cuda"
|
|
and not output_attentions
|
|
):
|
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
return causal_mask
|
|
|
|
|
|
|
|
class MistralForCausalLM(MistralPreTrainedModel):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = MistralModel(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
|
|
|
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
inputs_embeds=None,
|
|
cache_position=None,
|
|
use_cache=True,
|
|
**kwargs,
|
|
):
|
|
past_length = 0
|
|
|
|
if past_key_values is not None:
|
|
|
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
|
max_cache_length = (
|
|
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
|
if past_key_values.get_max_length() is not None
|
|
else None
|
|
)
|
|
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
|
|
|
|
|
elif past_length < input_ids.shape[1]:
|
|
input_ids = input_ids[:, past_length:]
|
|
|
|
|
|
|
|
if (
|
|
max_cache_length is not None
|
|
and attention_mask is not None
|
|
and cache_length + input_ids.shape[1] > max_cache_length
|
|
):
|
|
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
|
|
if (
|
|
past_length > 0
|
|
and attention_mask is not None
|
|
and isinstance(past_key_values, SlidingWindowCache)
|
|
and attention_mask.shape[1] > past_key_values.max_cache_len
|
|
):
|
|
attention_mask = attention_mask[:, -past_key_values.max_cache_len :]
|
|
|
|
|
|
if inputs_embeds is not None and past_length == 0:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids.contiguous()}
|
|
|
|
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
|
if cache_position is None:
|
|
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
|
elif use_cache:
|
|
cache_position = cache_position[-input_length:]
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"cache_position": cache_position,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": use_cache,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
class MistralStarForCausalLM(MistralPreTrainedModel):8
|
|
'''Open Thoughts + Quiet Mind'''
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = MistralStarModel(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
self.max_thoughts = config.max_thoughts
|
|
self.thought_length = config.thought_length
|
|
self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
|
|
self.use_concat_talk_head = config.use_concat_talk_head
|
|
self.use_shallow_talk = config.use_shallow_talk
|
|
self.use_complex_talk_head = config.use_complex_talk_head
|
|
self.use_weighted_talk_head = config.use_weighted_talk_head
|
|
|
|
assert not (self.use_weighted_talk_head and self.use_shallow_talk)
|
|
|
|
self.n_ahead = 1
|
|
self.n_ahead_talk = 1
|
|
self.n_passes = 1
|
|
self.n_tokens_print = 1
|
|
self.gradient_accumulation_steps = 1
|
|
self.training_steps = 0
|
|
self.tokenizer = None
|
|
self.start_token_id = None
|
|
self.end_token_id = None
|
|
self.rm_initialized = False
|
|
self.residual_talk_head = True
|
|
self.thought_init_std_scale = 1e-2
|
|
|
|
self.final_only_mode = False
|
|
self.first_and_last_mode = True
|
|
self.first_only = False
|
|
self.original_loss_weight = 0.5
|
|
|
|
self.cumulative_residual = False
|
|
self.clever_residual = False
|
|
self.skip_residual = False
|
|
self.no_residual = True
|
|
|
|
self.optimize_lm_head_only_at_start = False
|
|
self.optimize_model_only_at_start = False
|
|
|
|
if self.optimize_model_only_at_start:
|
|
raise NotImplementedError
|
|
self.train_only_thinking_embedding = False
|
|
self.weighted_embeddings = False
|
|
self.use_start_thought_token = True
|
|
self.use_end_thought_token = True
|
|
self.initialize_thought_embedding_to_normal = False
|
|
self.initial_start_token = "---"
|
|
self.initial_end_token = "---"
|
|
self.output_logits_at_the_end = True
|
|
|
|
self.gumbel_temperature = 0.001
|
|
|
|
self.use_policy_loss = True
|
|
self.include_policy_loss = True
|
|
self.trice_mode = True
|
|
self.remove_negative_rewards = True
|
|
self.use_policy_loss_for_end_thought = True
|
|
|
|
self.base_original_mode = False
|
|
self.original_mode = False
|
|
|
|
self.thought_prefix = "Create a plan, Recall useful information to be used as context,and or Generate a function in Python, which can be used as a re-usable artifact, to perform this task if required in the future. "
|
|
self.tokenized_thought_prefix = None
|
|
self.log_dict = defaultdict(int)
|
|
self.eval_log_dict = defaultdict(int)
|
|
self.print_final_only = True
|
|
self.loss_mean = loss_mean
|
|
self.all_rewards = []
|
|
self.all_unreduced_losses = []
|
|
self.kill_after = 100
|
|
|
|
self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
|
self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
|
|
|
self.policy_loss_beta = 1e6
|
|
self.embedding_scale = 1e2
|
|
self.reinforce_temperature = 3
|
|
self.base_loss_beta = 1
|
|
|
|
|
|
self.use_thought_prefix = False
|
|
self.use_reparam_for_thought_embeddings = False
|
|
self.use_upper_triangular = False
|
|
self.subtract_mean_reward = False
|
|
self.comparison_mode = False
|
|
self.gumbel_detach = True
|
|
|
|
|
|
self.eval_mode = False
|
|
|
|
num_talk = 1
|
|
talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
|
|
if self.use_weighted_talk_head:
|
|
talk_output_dim = 1
|
|
else:
|
|
talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
|
|
|
|
if not self.merged_lm_and_talk_heads:
|
|
if self.use_complex_talk_head:
|
|
self.talk_head = nn.ModuleList([nn.Sequential(
|
|
nn.Linear(talk_input_dim, config.hidden_size),
|
|
nn.ReLU(),
|
|
nn.Linear(config.hidden_size, config.hidden_size),
|
|
nn.ReLU(),
|
|
nn.Linear(config.hidden_size, talk_output_dim, bias=False)
|
|
)])
|
|
else:
|
|
self.talk_head = nn.ModuleList([nn.Sequential(
|
|
nn.Linear(talk_input_dim, talk_output_dim, bias=False)
|
|
)])
|
|
|
|
|
|
|
|
self.mixing_head = nn.Sequential(
|
|
nn.Linear(config.hidden_size * 2, config.hidden_size),
|
|
nn.ReLU(),
|
|
nn.Linear(config.hidden_size, 1),
|
|
)
|
|
self.post_init()
|
|
|
|
def calculate_policy_loss(self, thoughts, rewards):
|
|
thought_log_probs = []
|
|
for thought in thoughts:
|
|
thought_log_prob = self.lm_head(thought).log_softmax(dim=-1)
|
|
thought_log_probs.append(thought_log_prob)
|
|
|
|
thought_log_probs = torch.stack(thought_log_probs, dim=1)
|
|
thought_probs = torch.exp(thought_log_probs)
|
|
|
|
policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1))
|
|
|
|
return policy_loss
|
|
|
|
def _generate_thoughts(self, hidden_states, max_length):
|
|
batch_size = hidden_states.size(0)
|
|
thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device)
|
|
thought_embeddings = []
|
|
|
|
for i in range(self.config.max_thoughts):
|
|
thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device)
|
|
thought_outputs = self.generate(
|
|
input_ids=thought_input_ids,
|
|
max_length=max_length,
|
|
do_sample=True,
|
|
top_k=50,
|
|
top_p=0.95,
|
|
pad_token_id=self.config.pad_token_id,
|
|
eos_token_id=self.config.eos_token_id,
|
|
)
|
|
thought_ids[:, i, :] = thought_outputs
|
|
thought_embeddings.append(self.get_input_embeddings()(thought_outputs))
|
|
|
|
thought_embeddings = torch.stack(thought_embeddings, dim=1)
|
|
return thought_ids, thought_embeddings
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@torch.no_grad()
|
|
def infer(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
):
|
|
batch_size, seq_len = input_ids.shape
|
|
|
|
|
|
original_input_ids = input_ids.clone()
|
|
original_attention_mask = attention_mask.clone() if attention_mask is not None else None
|
|
|
|
|
|
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
|
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
|
seq_len += 1
|
|
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
|
|
|
|
|
continuation_length = self.n_ahead - 2
|
|
new_key_values = past_key_values
|
|
|
|
start_time = time.time()
|
|
for continuation_idx in range(continuation_length):
|
|
outputs = self.model(
|
|
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=new_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=True,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
new_key_values = outputs.past_key_values
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits[:, -1, :]
|
|
|
|
|
|
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
|
|
next_token_id = torch.argmax(next_token_logits, dim=-1)
|
|
|
|
|
|
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
|
|
seq_len += 1
|
|
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
|
|
|
|
|
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
|
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
|
seq_len += 1
|
|
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
|
|
|
|
|
outputs_before = self.model(
|
|
input_ids=original_input_ids,
|
|
attention_mask=original_attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states_before = outputs_before[0][:, -1:, :]
|
|
|
|
|
|
outputs_after = self.model(
|
|
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=new_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states_after = outputs_after[0][:, -1:, :]
|
|
|
|
|
|
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
|
|
|
|
|
|
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
|
|
|
|
|
|
logits = self.lm_head(mixed_hidden_states)
|
|
return logits
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward_legacy(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
|
|
|
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward_quiet(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, QuietForCausalLM
|
|
|
|
>>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
)
|
|
hidden_states = outputs.last_hidden_state
|
|
logits = self.lm_head(hidden_states)
|
|
|
|
thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length)
|
|
thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state
|
|
|
|
|
|
thought_logits = self.lm_head(thought_hidden_states)
|
|
|
|
|
|
mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits)
|
|
mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1))
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = mixed_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
if self.use_policy_loss:
|
|
rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts)
|
|
if self.remove_negative_rewards:
|
|
rewards = torch.clamp(rewards, min=0)
|
|
policy_loss = self.calculate_policy_loss(thought_ids, rewards)
|
|
loss = loss + policy_loss
|
|
else:
|
|
loss = None
|
|
|
|
if not return_dict:
|
|
output = (mixed_logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss if loss is not None else None,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
|
|
|
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
log_dict = self.log_dict if self.training else self.eval_log_dict
|
|
|
|
if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after:
|
|
raise ValueError("Killed after")
|
|
|
|
if not self.training:
|
|
n_ahead_talk_to_restore = self.n_ahead_talk
|
|
n_passes_to_restore = self.n_passes
|
|
self.n_ahead_talk = 1
|
|
self.n_passes = 1
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
|
|
assert not (self.skip_residual and self.use_policy_loss)
|
|
|
|
if self.tokenized_thought_prefix is None and self.use_thought_prefix:
|
|
self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
|
|
|
def apply_head(head, states, detach=False):
|
|
if detach:
|
|
head_weight = head.weight.detach()
|
|
else:
|
|
head_weight = head.weight
|
|
head_weight = head_weight.to(states.device)
|
|
return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
|
|
|
|
def idx_if_sequential(head, idx=0):
|
|
if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
|
|
return idx_if_sequential(head[idx], idx=idx)
|
|
return head
|
|
|
|
def none_repeat_interleave(x, n):
|
|
if x is None:
|
|
return x
|
|
return x.repeat_interleave(n, dim=0)
|
|
|
|
if self.n_passes > 1:
|
|
input_ids = none_repeat_interleave(input_ids, self.n_passes)
|
|
attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
|
|
position_ids = none_repeat_interleave(position_ids, self.n_passes)
|
|
inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
|
|
labels = none_repeat_interleave(labels, self.n_passes)
|
|
if past_key_values is not None:
|
|
past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
|
|
cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)
|
|
|
|
self.tokenizer_has_start_thought_token = True
|
|
self.tokenizer_has_end_thought_token = True
|
|
if self.start_token_id is None:
|
|
self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
|
if self.start_token_id == 0:
|
|
self.start_token_id = self.tokenizer.bos_token_id
|
|
self.tokenizer_has_start_thought_token = False
|
|
elif self.use_start_thought_token:
|
|
|
|
base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
|
|
if self.initialize_thought_embedding_to_normal:
|
|
self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
|
|
else:
|
|
self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
|
|
self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
|
if self.end_token_id is None:
|
|
self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
|
if self.end_token_id == 0:
|
|
self.end_token_id = self.tokenizer.eos_token_id
|
|
self.tokenizer_has_end_thought_token = False
|
|
elif self.use_end_thought_token:
|
|
|
|
base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
|
|
if self.initialize_thought_embedding_to_normal:
|
|
self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
|
|
else:
|
|
self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
|
|
self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
|
|
|
if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
|
|
self.rm_initialized = True
|
|
if not self.use_shallow_talk:
|
|
head = self.talk_head[0]
|
|
cur_head = head[-1] if isinstance(head, nn.Sequential) else head
|
|
talk_input_dim = cur_head.weight.data.shape[1]
|
|
talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
|
|
cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
|
|
else:
|
|
|
|
def lambda_transform(cur_head):
|
|
if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
|
|
return torch.cat([
|
|
torch.eye(
|
|
cur_head.weight.data.shape[0],
|
|
device=cur_head.weight.device,
|
|
dtype=cur_head.weight.dtype
|
|
),
|
|
torch.zeros(
|
|
cur_head.weight.data.shape[0],
|
|
cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
|
|
device=cur_head.weight.device,
|
|
dtype=cur_head.weight.dtype
|
|
)], dim=1)
|
|
return torch.eye(
|
|
cur_head.weight.data.shape[0],
|
|
device=cur_head.weight.device,
|
|
dtype=cur_head.weight.dtype
|
|
)
|
|
if isinstance(self.talk_head[0], nn.Sequential):
|
|
for cur_head in self.talk_head[0]:
|
|
|
|
if hasattr(cur_head, "weight"):
|
|
cur_head.weight.data = lambda_transform(cur_head)
|
|
else:
|
|
self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])
|
|
|
|
loss = None
|
|
prev_rm_tokens = None
|
|
cur_rm_tokens = None
|
|
prev_rm_logits = None
|
|
prev_sample_probs = None
|
|
did_skip_sampling = None
|
|
skip_sampling = None
|
|
sample_probs = None
|
|
hidden_states = None
|
|
logits = None
|
|
talk_kl_penalty = None
|
|
rm_logits = None
|
|
residual_logits = None
|
|
probabilities_2d = None
|
|
prev_probabilities_2d = None
|
|
policy_reward = None
|
|
logits_to_output = None
|
|
batch_size, seq_len = input_ids.shape
|
|
base_input_ids = input_ids.clone()
|
|
loss_list = []
|
|
dqn_loss_list = []
|
|
sampled_token_history = []
|
|
sample_probs_history = []
|
|
action_loglikelihoods_list = []
|
|
|
|
if self.use_end_thought_token or self.use_start_thought_token:
|
|
if not self.use_reparam_for_thought_embeddings:
|
|
start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale
|
|
end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale
|
|
else:
|
|
start_embedding = self.start_embedding * self.embedding_scale
|
|
end_embedding = self.end_embedding * self.embedding_scale
|
|
base_embeddings = self.model.embed_tokens.weight
|
|
if self.train_only_thinking_embedding:
|
|
base_embeddings = base_embeddings.detach()
|
|
|
|
fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
|
|
for ahead_idx in range(fwd_iters):
|
|
past_key_values_length = 0
|
|
if past_key_values is not None:
|
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
|
if use_legacy_cache:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
past_key_values_length = past_key_values.get_usable_length(seq_len)
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_len).long()
|
|
|
|
if inputs_embeds is None:
|
|
contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
|
|
contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
|
|
contains_thought = contains_start or contains_end
|
|
if contains_thought:
|
|
thought_id = self.start_token_id if contains_start else self.end_token_id
|
|
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
|
if self.use_reparam_for_thought_embeddings:
|
|
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
|
inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
|
if contains_start:
|
|
sampled_start = inputs_embeds.clone().detach()
|
|
if contains_end:
|
|
sampled_end = inputs_embeds.clone().detach()
|
|
else:
|
|
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
|
else:
|
|
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
|
inputs_embeds = self.model.embed_tokens(input_ids)
|
|
|
|
if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
|
|
if attention_mask is None:
|
|
base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
|
|
base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
|
|
base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
|
|
attention_mask = base_attention_mask
|
|
breakpoint()
|
|
elif attention_mask.dim() == 2:
|
|
if seq_len + past_key_values_length != attention_mask.shape[-1]:
|
|
breakpoint()
|
|
attention_mask = torch.cat(
|
|
[torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
|
|
dim=-1
|
|
)
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_len),
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
sliding_window=self.config.sliding_window,
|
|
)
|
|
|
|
outputs = self.model(
|
|
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
prev_hidden_states = hidden_states
|
|
hidden_states = outputs[0]
|
|
prev_rm_logits = rm_logits
|
|
prev_rm_tokens = cur_rm_tokens
|
|
|
|
if ahead_idx == 0:
|
|
hidden_states_lm = hidden_states
|
|
logits = self.lm_head(hidden_states_lm)
|
|
base_hidden_states = hidden_states.clone()
|
|
initial_loss_logits = logits.clone()
|
|
if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
|
|
logits = logits.detach()
|
|
base_hidden_states = base_hidden_states.detach()
|
|
if self.optimize_model_only_at_start:
|
|
hidden_states = hidden_states.detach()
|
|
base_logits = logits.clone()
|
|
else:
|
|
talk_hidden_states = hidden_states
|
|
if self.merged_lm_and_talk_heads:
|
|
assert self.no_residual
|
|
residual_logits = self.lm_head(hidden_states)
|
|
talk_hidden_states = hidden_states
|
|
else:
|
|
if ahead_idx > self.n_ahead - 1:
|
|
cur_base_hidden = torch.cat([
|
|
base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
|
|
base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
|
|
], dim=-2)
|
|
else:
|
|
cur_base_hidden = base_hidden_states
|
|
|
|
if self.use_concat_talk_head:
|
|
|
|
head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
|
|
else:
|
|
head_input_hidden_states = talk_hidden_states
|
|
|
|
residual_logits = self.talk_head[0](head_input_hidden_states)
|
|
if self.use_shallow_talk:
|
|
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
|
residual_logits = residual_logits.to(logits.device)
|
|
if self.use_weighted_talk_head:
|
|
|
|
residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
|
|
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
|
|
|
assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
|
|
if self.clever_residual:
|
|
if ahead_idx >= self.n_ahead - 1:
|
|
|
|
cur_base_logits = torch.cat([
|
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
|
], dim=-2)
|
|
if self.optimize_lm_head_only_at_start:
|
|
cur_base_logits = cur_base_logits.detach()
|
|
logits = cur_base_logits + residual_logits
|
|
else:
|
|
logits += residual_logits / self.n_ahead
|
|
elif self.cumulative_residual:
|
|
if self.residual_talk_head:
|
|
if ahead_idx < self.n_ahead:
|
|
logits += residual_logits
|
|
else:
|
|
|
|
cur_base_logits = torch.cat([
|
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
|
], dim=-2)
|
|
if self.optimize_lm_head_only_at_start:
|
|
cur_base_logits = cur_base_logits.detach()
|
|
logits = cur_base_logits + residual_logits
|
|
else:
|
|
if ahead_idx < self.n_ahead:
|
|
logits += residual_logits
|
|
else:
|
|
logits = residual_logits
|
|
elif self.skip_residual:
|
|
if ahead_idx >= self.n_ahead:
|
|
|
|
cur_base_logits = torch.cat([
|
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
|
], dim=-2)
|
|
if self.optimize_lm_head_only_at_start:
|
|
cur_base_logits = cur_base_logits.detach()
|
|
logits = cur_base_logits
|
|
elif self.no_residual:
|
|
logits = residual_logits
|
|
else:
|
|
logits = base_logits + residual_logits
|
|
|
|
attempted = False
|
|
talk_loss_list = []
|
|
if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):
|
|
loss = None
|
|
attempted = True
|
|
|
|
if labels is not None:
|
|
for shift_amount in range(self.n_ahead_talk):
|
|
|
|
|
|
|
|
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
|
loss_logits = initial_loss_logits
|
|
else:
|
|
loss_logits = logits
|
|
shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
|
|
shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss(reduction="none")
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1).clone()
|
|
|
|
shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
|
|
loss_list.append(loss)
|
|
talk_loss_list.append(nonzero_mean(loss).detach())
|
|
|
|
if not attempted or self.comparison_mode:
|
|
rm_hidden_states = hidden_states
|
|
|
|
rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
|
|
|
|
|
|
if self.tokenizer_has_start_thought_token:
|
|
rm_logits[..., self.start_token_id] = -1e10
|
|
if self.tokenizer_has_end_thought_token:
|
|
rm_logits[..., self.end_token_id] = -1e10
|
|
probabilities = rm_logits
|
|
if probabilities_2d is not None:
|
|
prev_probabilities_2d = probabilities_2d.clone()
|
|
probabilities_2d = probabilities.view(-1, probabilities.size(-1))
|
|
|
|
did_skip_sampling = skip_sampling
|
|
skip_sampling = False
|
|
if ahead_idx == 0 and self.use_start_thought_token:
|
|
override_token = self.start_token_id
|
|
elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
|
|
override_token = self.tokenized_thought_prefix[..., ahead_idx]
|
|
elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
|
|
override_token = self.end_token_id
|
|
else:
|
|
override_token = None
|
|
if override_token is not None and self.n_ahead > 1:
|
|
|
|
probabilities_2d = torch.zeros_like(probabilities_2d)
|
|
probabilities_2d[:, override_token] = 1.0
|
|
skip_sampling = True
|
|
elif ahead_idx >= self.n_ahead - 1:
|
|
if labels is not None:
|
|
cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
|
|
|
|
shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
|
|
padding = torch.full_like(
|
|
labels[..., :cur_talk_n],
|
|
self.tokenizer.pad_token_id,
|
|
dtype=torch.long,
|
|
device=shift_labels.device
|
|
)
|
|
new_rm_tokens = torch.cat(
|
|
[shift_labels, padding],
|
|
dim=-1
|
|
)
|
|
|
|
probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
|
|
skip_sampling = True
|
|
else:
|
|
continue
|
|
temperature = self.gumbel_temperature if self.training else 0.001
|
|
prev_sample_probs = sample_probs
|
|
sample_probs = probabilities_2d
|
|
if ahead_idx < self.n_ahead - 1 and not skip_sampling:
|
|
probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
|
|
if self.gumbel_detach:
|
|
probabilities_2d = probabilities_2d.detach()
|
|
sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
|
|
|
|
contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
|
|
contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
|
|
contains_thought = contains_start or contains_end
|
|
|
|
if not contains_thought:
|
|
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
|
inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype))
|
|
else:
|
|
thought_id = self.start_token_id if contains_start else self.end_token_id
|
|
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
|
if self.use_reparam_for_thought_embeddings:
|
|
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
|
inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
|
if contains_start:
|
|
sampled_start = inputs_embeds.clone().detach()
|
|
else:
|
|
sampled_end = inputs_embeds.clone().detach()
|
|
else:
|
|
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
|
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
|
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
|
|
|
if len(attention_mask.shape) == 2:
|
|
breakpoint()
|
|
else:
|
|
original_attention = attention_mask[..., :attention_mask.shape[-2]]
|
|
if self.use_upper_triangular:
|
|
new_attention = original_attention
|
|
else:
|
|
original_attention = original_attention == attention_mask.max()
|
|
|
|
if not attention_mask.dtype == torch.bfloat16:
|
|
new_attention = torch.eye(
|
|
seq_len, dtype=attention_mask.dtype, device=attention_mask.device
|
|
)
|
|
else:
|
|
new_attention = torch.eye(
|
|
seq_len, dtype=torch.float32, device=attention_mask.device
|
|
).to(attention_mask.dtype)
|
|
|
|
new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
|
|
new_attention = new_attention * original_attention
|
|
new_attention[new_attention == 0] = attention_mask.min()
|
|
new_attention[new_attention == 1] = attention_mask.max()
|
|
attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
|
|
past_key_values = outputs.past_key_values
|
|
position_ids = position_ids + 1
|
|
|
|
if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
|
|
|
|
|
|
|
|
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
|
loss_logits = initial_loss_logits
|
|
else:
|
|
loss_logits = logits
|
|
shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
|
|
shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
|
|
shift_labels = labels[..., shift_idx:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss(reduction="none")
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
|
|
shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
|
|
unreduced_loss = loss_fct(shift_logits, shift_labels)
|
|
if torch.any(unreduced_loss != unreduced_loss):
|
|
raise ValueError("NaN loss")
|
|
unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
|
|
loss_list.append(unreduced_loss)
|
|
|
|
|
|
if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
|
|
|
|
previous_loss = loss_list[-2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ahead_idx < self.n_ahead - 1:
|
|
shift_amount = 0
|
|
original_dqn_reward = (previous_loss - unreduced_loss).detach()
|
|
if self.first_and_last_mode:
|
|
original_dqn_reward = original_dqn_reward * 0.0
|
|
else:
|
|
|
|
|
|
shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
|
|
|
|
|
|
|
|
|
|
cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
|
|
cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
|
|
|
cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
|
|
cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
|
|
cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
|
|
|
|
cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
|
|
cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
|
|
cur_policy_reward_base_loss = loss_fct(
|
|
cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
|
|
).reshape(logits.shape[0], -1)
|
|
original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
|
|
|
|
if not did_skip_sampling:
|
|
nonzero_indices = prev_probabilities_2d.nonzero()
|
|
action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
|
|
action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
|
|
action_loglikelihoods_list.append(action_loglikelihoods_2d)
|
|
if policy_reward is None:
|
|
policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
|
else:
|
|
if self.n_ahead_talk > shift_amount:
|
|
added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
|
else:
|
|
added_reward = original_dqn_reward
|
|
policy_reward += added_reward
|
|
|
|
if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2:
|
|
|
|
if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token):
|
|
|
|
|
|
|
|
if self.use_start_thought_token:
|
|
exp_start_std = torch.exp(start_embedding[1])
|
|
start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi)
|
|
start_loglikelihood = start_loglikelihood.mean(dim=-1)
|
|
if self.use_end_thought_token:
|
|
exp_end_std = torch.exp(end_embedding[1])
|
|
end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi)
|
|
end_loglikelihood = end_loglikelihood.mean(dim=-1)
|
|
|
|
if self.use_end_thought_token and self.use_policy_loss_for_end_thought:
|
|
action_loglikelihoods_list.append(end_loglikelihood)
|
|
if self.use_start_thought_token:
|
|
action_loglikelihoods_list.append(start_loglikelihood)
|
|
|
|
if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode:
|
|
with torch.no_grad():
|
|
|
|
filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten()
|
|
filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id
|
|
filtered_tokens = filtered_tokens[filtered_tokens_mask]
|
|
filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()
|
|
filtered_rewards = filtered_rewards[filtered_tokens_mask]
|
|
|
|
abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten())
|
|
abs_reward_list = abs_reward_list[filtered_tokens_mask]
|
|
medium_quantile = np.quantile(abs_reward_list, 0.5)
|
|
upper_quantile = np.quantile(abs_reward_list, 0.95)
|
|
|
|
save_tokens_with_rewards_to_pdf(
|
|
filtered_tokens,
|
|
[0] + filtered_rewards.tolist(),
|
|
self.tokenizer,
|
|
output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf",
|
|
eps=medium_quantile,
|
|
eps2=upper_quantile,
|
|
)
|
|
|
|
def plot_kde(data, losses):
|
|
sns.set(style="whitegrid")
|
|
|
|
sns.kdeplot(data, fill=True)
|
|
|
|
plt.title("KDE Plot")
|
|
plt.xlabel("Value")
|
|
plt.ylabel("Density")
|
|
|
|
plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
|
|
|
|
plt.close()
|
|
|
|
|
|
base_colors = sns.color_palette("light:#5A9", n_colors=256)
|
|
base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors)
|
|
log_norm = LogNorm(vmin=1e-3, vmax=10)
|
|
|
|
sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0)
|
|
|
|
plt.xlim(-1, 1)
|
|
plt.ylim(0, 25)
|
|
plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
|
|
plt.close()
|
|
|
|
self.all_rewards.extend(filtered_rewards)
|
|
self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy())
|
|
plot_kde(self.all_rewards, self.all_unreduced_losses)
|
|
|
|
for action_loglikelihoods_2d in action_loglikelihoods_list:
|
|
train_policy_reward = policy_reward
|
|
|
|
|
|
if self.trice_mode and self.n_passes > 1:
|
|
batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
|
|
|
|
train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
|
|
train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
|
|
|
|
if self.subtract_mean_reward:
|
|
train_policy_reward = train_policy_reward - train_policy_reward.mean()
|
|
if self.remove_negative_rewards:
|
|
fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
|
|
else:
|
|
fixed_policy_reward = train_policy_reward.detach()
|
|
actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
|
|
if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
|
|
|
|
break
|
|
dqn_loss_list.append(actor_loss.mean())
|
|
|
|
if loss_list:
|
|
if self.first_and_last_mode:
|
|
loss = sum(
|
|
self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
|
|
) * (1 - self.original_loss_weight) / self.n_ahead_talk
|
|
loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
|
|
|
|
|
|
for i in range(1, len(loss_list) - self.n_ahead_talk):
|
|
loss_list[i] = loss_list[i] * math.nan
|
|
elif self.first_only:
|
|
loss = self.loss_mean(loss_list[0])
|
|
elif self.final_only_mode:
|
|
loss = sum(
|
|
self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
|
|
) / self.n_ahead_talk
|
|
else:
|
|
loss = None
|
|
for i in range(len(loss_list)):
|
|
cur_loss = self.loss_mean(loss_list[i])
|
|
if loss is not None:
|
|
loss = loss + cur_loss.to(loss.device)
|
|
else:
|
|
loss = cur_loss
|
|
loss = loss / len(loss_list)
|
|
|
|
loss = loss * self.base_loss_beta
|
|
|
|
if dqn_loss_list:
|
|
dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
|
|
if self.include_policy_loss:
|
|
if loss is not None:
|
|
loss += dqn_loss * self.policy_loss_beta
|
|
else:
|
|
loss = dqn_loss * self.policy_loss_beta
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
base_log_dict = {
|
|
f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
|
|
}
|
|
|
|
if loss is not None:
|
|
base_log_dict["loss_train"] = loss.item()
|
|
|
|
for loss_key, loss_val in base_log_dict.items():
|
|
log_dict[loss_key] += loss_val / self.n_tokens_print
|
|
|
|
if self.use_policy_loss and policy_reward is not None:
|
|
log_dict["policy_loss"] += dqn_loss / self.n_tokens_print
|
|
log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print
|
|
|
|
if not loss_list:
|
|
if loss is not None:
|
|
log_dict["loss_0"] += loss / self.n_tokens_print
|
|
else:
|
|
log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print
|
|
log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print
|
|
|
|
|
|
if loss_list:
|
|
for i in range(len(loss_list)):
|
|
talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1)
|
|
if not talk_loss_list:
|
|
cur_talk_loss = nonzero_mean(loss_list[0])
|
|
else:
|
|
cur_talk_loss = talk_loss_list[talk_idx]
|
|
log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
|
|
if self.training:
|
|
self.training_steps += 1
|
|
|
|
if not self.training:
|
|
self.n_ahead_talk = n_ahead_talk_to_restore
|
|
self.n_passes = n_passes_to_restore
|
|
return CausalLMOutputWithPast(
|
|
loss=loss if loss is not None else None,
|
|
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
):
|
|
|
|
if past_key_values is not None:
|
|
if isinstance(past_key_values, Cache):
|
|
cache_length = past_key_values.get_seq_length()
|
|
past_length = past_key_values.seen_tokens
|
|
max_cache_length = past_key_values.get_max_length()
|
|
else:
|
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
|
max_cache_length = None
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
|
|
|
|
|
elif past_length < input_ids.shape[1]:
|
|
input_ids = input_ids[:, past_length:]
|
|
|
|
|
|
|
|
if (
|
|
max_cache_length is not None
|
|
and attention_mask is not None
|
|
and cache_length + input_ids.shape[1] > max_cache_length
|
|
):
|
|
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The Mistral Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
[`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-2) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
MISTRAL_START_DOCSTRING,
|
|
)
|
|
|
|
class MistralForSequenceClassification(MistralPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = MistralModel(config)
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size = input_ids.shape[0]
|
|
else:
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
|
sequence_lengths = sequence_lengths.to(logits.device)
|
|
else:
|
|
sequence_lengths = -1
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(pooled_logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(pooled_logits, labels)
|
|
if not return_dict:
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The Mistral Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
|
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
|
""",
|
|
MISTRAL_START_DOCSTRING,
|
|
)
|
|
|
|
class MistralForTokenClassification(MistralPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = MistralModel(config)
|
|
if getattr(config, "classifier_dropout", None) is not None:
|
|
classifier_dropout = config.classifier_dropout
|
|
elif getattr(config, "hidden_dropout", None) is not None:
|
|
classifier_dropout = config.hidden_dropout
|
|
else:
|
|
classifier_dropout = 0.1
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
sequence_output = outputs[0]
|
|
sequence_output = self.dropout(sequence_output)
|
|
logits = self.score(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return TokenClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The Mistral Model transformer with a span classification head on top for extractive question-answering tasks like
|
|
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
MISTRAL_START_DOCSTRING,
|
|
)
|
|
class MistralForQuestionAnswering(MistralPreTrainedModel):
|
|
base_model_prefix = "transformer"
|
|
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.transformer = MistralModel(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.transformer.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.transformer.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
start_positions: Optional[torch.LongTensor] = None,
|
|
end_positions: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
|
r"""
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.transformer(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
total_loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
|
|
|
ignored_index = start_logits.size(1)
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
if not return_dict:
|
|
output = (start_logits, end_logits) + outputs[2:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|