|
|
|
|
|
from reportlab.pdfgen import canvas |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.lib.colors import HexColor |
|
import os |
|
from shutil import copyfile |
|
from collections import defaultdict |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple |
|
import sentencepiece as spm |
|
from transformers.convert_slow_tokenizer import import_protobuf |
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa |
|
from transformers.utils import logging |
|
from tokenizers import processors |
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast |
|
from transformers.utils import is_sentencepiece_available, logging |
|
from transformers.utils.versions import require_version |
|
if TYPE_CHECKING: |
|
from transformers.tokenization_utils_base import TextInput |
|
|
|
|
|
|
|
|
|
SPIECE_UNDERLINE = "▁" |
|
require_version("tokenizers>=0.13.3") |
|
logger = logging.get_logger(__name__) |
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"} |
|
|
|
B_INST, E_INST = "[INST]", "[/INST]" |
|
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" |
|
|
|
|
|
DEFAULT_SYSTEM_PROMPT = """you are the world archive of knowledge and a friendly helpful artificial intelligent being: |
|
consider if the current task denotes thecreation of a functions in pyuthon that can be saved and reused : returning the artifact to the user for saving or if access os given to be saved on the user system: |
|
Be flirtatious and joyfull, always willing to help or engage in conversation or express an opinion or sentiment: |
|
answer all questions indepth supply and helpfull references where possible; """ |
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
import torch.nn.functional as F |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging,add_start_docstrings,add_start_docstrings_to_model_forward,replace_return_docstrings |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.cache_utils import Cache,DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_outputs import BaseModelOutputWithPast,CausalLMOutputWithPast,SequenceClassifierOutputWithPast,TokenClassifierOutput,QuestionAnsweringModelOutput,MoeCausalLMOutputWithPast,MoeModelOutputWithPast |
|
|
|
logger = logging.get_logger(__name__) |
|
_CONFIG_FOR_DOC = "MistralConfig" |
|
MISTRAL_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MistralConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", |
|
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", |
|
} |
|
|
|
|
|
class MistralStarConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an |
|
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. |
|
|
|
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MistralModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
```python |
|
>>> from transformers import MistralModel, MistralConfig |
|
|
|
>>> # Initializing a Mistral 7B style configuration |
|
>>> configuration = MistralConfig() |
|
|
|
>>> # Initializing a model from the Mistral 7B style configuration |
|
>>> model = MistralModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "mistral_star" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
sliding_window=4096, |
|
attention_dropout=0.0, |
|
max_thoughts=16, |
|
thought_length = 10, |
|
merged_talk_heads=True, |
|
merged_lm_and_talk_heads=False, |
|
merged_lm_and_think_heads=True, |
|
use_concat_talk_head=True, |
|
use_shallow_think=True, |
|
use_shallow_talk=False, |
|
use_complex_think_head=False, |
|
use_complex_talk_head=True, |
|
use_weighted_talk_head=True, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
self.max_thoughts = max_thoughts |
|
self.thought_length = thought_length |
|
self.merged_talk_heads = merged_talk_heads |
|
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads |
|
self.merged_lm_and_think_heads = merged_lm_and_think_heads |
|
self.use_concat_talk_head = use_concat_talk_head |
|
self.use_shallow_think = use_shallow_think |
|
self.use_shallow_talk = use_shallow_talk |
|
self.use_complex_think_head = use_complex_think_head |
|
self.use_complex_talk_head = use_complex_talk_head |
|
self.use_weighted_talk_head = use_weighted_talk_head |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
class MistralQuietConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`QuietModel`]. It is used to instantiate an |
|
Quiet model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Quiet-7B-v0.1 or Quiet-7B-Instruct-v0.1. |
|
|
|
[quietai/Quiet-7B-v0.1](https://huggingface.co/quietai/Quiet-7B-v0.1) |
|
[quietai/Quiet-7B-Instruct-v0.1](https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Quiet model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`QuietModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Quiet's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
```python |
|
>>> from transformers import QuietModel, QuietConfig |
|
|
|
>>> # Initializing a Quiet 7B style configuration |
|
>>> configuration = QuietConfig() |
|
|
|
>>> # Initializing a model from the Quiet 7B style configuration |
|
>>> model = QuietModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "mistral_quiet" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
max_thoughts: int = 3, |
|
thought_length: int = 10, |
|
eos_token_id=2, |
|
end_token_id=2, |
|
start_token_id=0, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
sliding_window=4096, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.max_thoughts = max_thoughts |
|
self.thought_length = thought_length |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
start_token_id=start_token_id, |
|
end_token_id=end_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
class MistralConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an |
|
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. |
|
|
|
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MistralModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
```python |
|
>>> from transformers import MistralModel, MistralConfig |
|
|
|
>>> # Initializing a Mistral 7B style configuration |
|
>>> configuration = MistralConfig() |
|
|
|
>>> # Initializing a model from the Mistral 7B style configuration |
|
>>> model = MistralModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "mistral" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
sliding_window=4096, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
class MixtralConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an |
|
Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1. |
|
|
|
[mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B) |
|
[mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MixtralModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 1000000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
num_experts_per_tok (`int`, *optional*, defaults to 2): |
|
The number of experts to route per-token, can be also interpreted as the `top-k` routing |
|
parameter |
|
num_local_experts (`int`, *optional*, defaults to 8): |
|
Number of experts per Sparse MLP layer. |
|
output_router_logits (`bool`, *optional*, defaults to `False`): |
|
Whether or not the router logits should be returned by the model. Enabeling this will also |
|
allow the model to output the auxiliary loss. See [here]() for more details |
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): |
|
The aux loss factor for the total loss. |
|
router_jitter_noise (`float`, *optional*, defaults to 0.0): |
|
Amount of noise to add to the router. |
|
|
|
```python |
|
>>> from transformers import MixtralModel, MixtralConfig |
|
|
|
>>> # Initializing a Mixtral 7B style configuration |
|
>>> configuration = MixtralConfig() |
|
|
|
>>> # Initializing a model from the Mixtral 7B style configuration |
|
>>> model = MixtralModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "mixtral" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_theta=1e6, |
|
sliding_window=None, |
|
attention_dropout=0.0, |
|
num_experts_per_tok=2, |
|
num_local_experts=8, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.001, |
|
router_jitter_noise=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_local_experts = num_local_experts |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.router_jitter_noise = router_jitter_noise |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_file="text.pdf", eps=0.2, eps2=0.5): |
|
from reportlab.pdfgen import canvas |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.lib.colors import HexColor |
|
c = canvas.Canvas(output_file, pagesize=letter) |
|
c.setFont("Courier", 8) |
|
x, y = 50, 750 |
|
previous_text = "" |
|
current_text = "" |
|
for token_idx, reward in enumerate(token_rewards): |
|
current_text = tokenizer.decode(input_ids[: token_idx + 1]) |
|
if current_text != previous_text: |
|
diff_text = current_text[len(previous_text) :] |
|
if "\n" in diff_text: |
|
lines = diff_text.split("\n") |
|
for line_idx, line in enumerate(lines): |
|
if line_idx > 0: |
|
x = 50 |
|
y -= 12 |
|
if abs(reward) < eps: |
|
opacity = 0 |
|
elif abs(reward) > eps2: |
|
opacity = 0.8 |
|
else: |
|
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps) |
|
text_width = c.stringWidth(line) |
|
if reward > 0: |
|
highlight_color = HexColor("#4CCD99") |
|
else: |
|
highlight_color = HexColor("#FFC700") |
|
highlight_color.alpha = opacity |
|
c.setFillColor(highlight_color) |
|
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False) |
|
c.setFillColor(HexColor("#000000")) |
|
c.drawString(x, y, line) |
|
x += text_width |
|
else: |
|
if abs(reward) < eps: |
|
opacity = 0 |
|
elif abs(reward) > eps2: |
|
opacity = 0.8 |
|
else: |
|
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps) |
|
text_width = c.stringWidth(diff_text) |
|
if reward > 0: |
|
highlight_color = HexColor("#4CCD99") |
|
else: |
|
highlight_color = HexColor("#FFC700") |
|
highlight_color.alpha = opacity |
|
c.setFillColor(highlight_color) |
|
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False) |
|
c.setFillColor(HexColor("#000000")) |
|
c.drawString(x, y, diff_text) |
|
x += text_width |
|
if x > 550: |
|
x = 50 |
|
y -= 12 |
|
if y < 50: |
|
c.showPage() |
|
y = 750 |
|
x = 50 |
|
previous_text = current_text |
|
c.showPage() |
|
c.save() |
|
def nonzero_mean(x, axis=None): |
|
if axis is not None: |
|
return x.sum(axis) / (x != 0).sum(axis) |
|
return x.sum() / (x != 0).sum() |
|
def loss_mean(x): |
|
return x.sum() / (x != 0).sum() |
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
|
|
class MistralRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
@torch.no_grad() |
|
|
|
def forward(self, x, position_ids): |
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
class MistralRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
MistralRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
class MistralAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
|
|
self.rotary_emb = MistralRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.view(bsz, q_len, -1) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
class MistralSdpaAttention(MistralAttention): |
|
""" |
|
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, -1) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
class MistralMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_state): |
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
MISTRAL_ATTENTION_CLASSES = { |
|
"eager": MistralAttention,"greedy" : MistralSdpaAttention |
|
} |
|
|
|
class MistralDecoderLayer(nn.Module): |
|
def __init__(self, config: MistralConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) |
|
|
|
self.mlp = MistralMLP(config) |
|
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
config_class = MistraStarlConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MistralDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
|
|
|
|
|
class MixtralBlockSparseTop2MLP(nn.Module): |
|
def __init__(self, config: MixtralConfig): |
|
super().__init__() |
|
self.ffn_dim = config.intermediate_size |
|
self.hidden_dim = config.hidden_size |
|
|
|
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) |
|
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states): |
|
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) |
|
current_hidden_states = self.w2(current_hidden_states) |
|
return current_hidden_states |
|
class MixtralSparseMoeBlock(nn.Module): |
|
""" |
|
This implementation is |
|
strictly equivalent to standard MoE with full capacity (no |
|
dropped tokens). It's faster since it formulates MoE operations |
|
in terms of block-sparse operations to accomodate imbalanced |
|
assignments of tokens to experts, whereas standard MoE either |
|
(1) drop tokens at the cost of reduced performance or (2) set |
|
capacity factor to number of experts and thus waste computation |
|
and memory on padding. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_dim = config.hidden_size |
|
self.ffn_dim = config.intermediate_size |
|
self.num_experts = config.num_local_experts |
|
self.top_k = config.num_experts_per_tok |
|
|
|
|
|
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) |
|
|
|
self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)]) |
|
|
|
|
|
self.jitter_noise = config.router_jitter_noise |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
""" """ |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
if self.training and self.jitter_noise > 0: |
|
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) |
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
return final_hidden_states, router_logits |
|
class MixtralDecoderLayer(nn.Module): |
|
def __init__(self, config: MixtralConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.block_sparse_moe = MixtralSparseMoeBlock(config) |
|
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
should not be returned during inference. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states, router_logits = self.block_sparse_moe(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
class MistralPreTrainedModel(PreTrainedModel): |
|
config_class = MistralConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MistralDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = False |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
MISTRAL_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
@add_start_docstrings( |
|
"The bare Mistral Model outputting raw hidden-states without any specific head on top.", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
class MistralStarModel(MistralPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] |
|
|
|
Args: |
|
config: MistralConfig |
|
""" |
|
|
|
def __init__(self, config: MistralStarConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
return_legacy_cache = False |
|
if use_cache and not isinstance(past_key_values, Cache): |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
return_legacy_cache = True |
|
logger.warning_once( |
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " |
|
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" |
|
) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if return_legacy_cache: |
|
next_cache = next_cache.to_legacy_cache() |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
use_cache: bool, |
|
output_attentions: bool, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and use_cache: |
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
past_seen_tokens = cache_position[0] if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and not (using_static_cache or using_sliding_window_cache) |
|
and not output_attentions |
|
): |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
sliding_window=self.config.sliding_window, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
|
|
if using_sliding_window_cache: |
|
target_length = max(sequence_length, self.config.sliding_window) |
|
|
|
elif using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
|
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
if attention_mask.max() != 0: |
|
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") |
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
if self.config.sliding_window is not None: |
|
if not using_sliding_window_cache or sequence_length > self.config.sliding_window: |
|
exclude_mask.bitwise_or_( |
|
torch.arange(target_length, device=device) |
|
<= (cache_position.reshape(-1, 1) - self.config.sliding_window) |
|
) |
|
causal_mask *= exclude_mask |
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
if attention_mask.dim() == 2: |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
|
|
def load_balancing_loss_func( |
|
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None |
|
) -> float: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): |
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
shape [batch_size X sequence_length, num_experts]. |
|
attention_mask (`torch.Tensor`, None): |
|
The attention_mask used in forward function |
|
shape [batch_size X sequence_length] if not None. |
|
num_experts (`int`, *optional*): |
|
Number of experts |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
return 0 |
|
|
|
if isinstance(gate_logits, tuple): |
|
compute_device = gate_logits[0].device |
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) |
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) |
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
if attention_mask is None: |
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
else: |
|
batch_size, sequence_length = attention_mask.shape |
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) |
|
|
|
|
|
expert_attention_mask = ( |
|
attention_mask[None, :, :, None, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) |
|
.reshape(-1, top_k, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
expert_attention_mask, dim=0 |
|
) |
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
attention_mask[None, :, :, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
.reshape(-1, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
router_per_expert_attention_mask, dim=0 |
|
) |
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) |
|
return overall_loss * num_experts |
|
|
|
MIXTRAL_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MixtralConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
@add_start_docstrings( |
|
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.", |
|
MIXTRAL_START_DOCSTRING, |
|
) |
|
|
|
class MixtralPreTrainedModel(PreTrainedModel): |
|
config_class = MixtralConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MixtralDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = False |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
MIXTRAL_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
should not be returned during inference. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
@add_start_docstrings( |
|
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.", |
|
MIXTRAL_START_DOCSTRING, |
|
) |
|
|
|
class MixtralModel(MixtralPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`] |
|
|
|
Args: |
|
config: MixtralConfig |
|
""" |
|
|
|
def __init__(self, config: MixtralConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
use_legacy_cache = False |
|
if use_cache and not isinstance(past_key_values, Cache): |
|
use_legacy_cache = True |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
logger.warning_once( |
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " |
|
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
output_router_logits, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
output_router_logits=output_router_logits, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if output_router_logits: |
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] |
|
if v is not None |
|
) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits, |
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
|
|
|
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
if attention_mask.max() != 0: |
|
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") |
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
|
|
class MixtralForCausalLM(MixtralPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = MixtralModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
self.num_experts = config.num_local_experts |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM |
|
|
|
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
aux_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], |
|
self.num_experts, |
|
self.num_experts_per_tok, |
|
attention_mask, |
|
) |
|
if labels is not None: |
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
if output_router_logits: |
|
output = (aux_loss,) + output |
|
return (loss,) + output if loss is not None else output |
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
output_router_logits=False, |
|
cache_position=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
past_length = 0 |
|
|
|
if past_key_values is not None: |
|
|
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() |
|
max_cache_length = ( |
|
torch.tensor(past_key_values.get_max_length(), device=input_ids.device) |
|
if past_key_values.get_max_length() is not None |
|
else None |
|
) |
|
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_length == 0: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] |
|
if cache_position is None: |
|
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) |
|
elif use_cache: |
|
cache_position = cache_position[-input_length:] |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
"output_router_logits": output_router_logits, |
|
"cache_position": cache_position, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
class MistralForCausalLM(MistralPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = MistralModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, MistralForCausalLM |
|
|
|
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
past_length = 0 |
|
|
|
if past_key_values is not None: |
|
|
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() |
|
max_cache_length = ( |
|
torch.tensor(past_key_values.get_max_length(), device=input_ids.device) |
|
if past_key_values.get_max_length() is not None |
|
else None |
|
) |
|
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if ( |
|
past_length > 0 |
|
and attention_mask is not None |
|
and isinstance(past_key_values, SlidingWindowCache) |
|
and attention_mask.shape[1] > past_key_values.max_cache_len |
|
): |
|
attention_mask = attention_mask[:, -past_key_values.max_cache_len :] |
|
|
|
|
|
if inputs_embeds is not None and past_length == 0: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] |
|
if cache_position is None: |
|
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) |
|
elif use_cache: |
|
cache_position = cache_position[-input_length:] |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
class MistralStarForCausalLM(MistralPreTrainedModel): |
|
'''Open Thoughts''' |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = MistralModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.max_thoughts = config.max_thoughts |
|
self.thought_length = config.thought_length |
|
self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads |
|
self.use_concat_talk_head = config.use_concat_talk_head |
|
self.use_shallow_talk = config.use_shallow_talk |
|
self.use_complex_talk_head = config.use_complex_talk_head |
|
self.use_weighted_talk_head = config.use_weighted_talk_head |
|
|
|
assert not (self.use_weighted_talk_head and self.use_shallow_talk) |
|
|
|
self.n_ahead = 1 |
|
self.n_ahead_talk = 1 |
|
self.n_passes = 1 |
|
self.n_tokens_print = 1 |
|
self.gradient_accumulation_steps = 1 |
|
self.training_steps = 0 |
|
self.tokenizer = None |
|
self.start_token_id = None |
|
self.end_token_id = None |
|
self.rm_initialized = False |
|
self.residual_talk_head = True |
|
self.thought_init_std_scale = 1e-2 |
|
|
|
self.final_only_mode = False |
|
self.first_and_last_mode = True |
|
self.first_only = False |
|
self.original_loss_weight = 0.5 |
|
|
|
self.cumulative_residual = False |
|
self.clever_residual = False |
|
self.skip_residual = False |
|
self.no_residual = True |
|
|
|
self.optimize_lm_head_only_at_start = False |
|
self.optimize_model_only_at_start = False |
|
|
|
if self.optimize_model_only_at_start: |
|
raise NotImplementedError |
|
self.train_only_thinking_embedding = False |
|
self.weighted_embeddings = False |
|
self.use_start_thought_token = True |
|
self.use_end_thought_token = True |
|
self.initialize_thought_embedding_to_normal = False |
|
self.initial_start_token = "---" |
|
self.initial_end_token = "---" |
|
self.output_logits_at_the_end = True |
|
|
|
self.wandb_enabled = False |
|
self.gumbel_temperature = 0.001 |
|
|
|
self.use_policy_loss = True |
|
self.include_policy_loss = True |
|
self.trice_mode = True |
|
self.remove_negative_rewards = True |
|
self.use_policy_loss_for_end_thought = True |
|
|
|
self.base_original_mode = False |
|
self.original_mode = False |
|
|
|
self.thought_prefix = "Create a plan, Recall useful information to be used as context,and or Generate a function in Python, which can be used as a re-usable artifact, to perform this task if required in the future. " |
|
self.tokenized_thought_prefix = None |
|
self.log_dict = defaultdict(int) |
|
self.eval_log_dict = defaultdict(int) |
|
self.print_final_only = True |
|
self.loss_mean = loss_mean |
|
self.all_rewards = [] |
|
self.all_unreduced_losses = [] |
|
self.kill_after = 100 |
|
|
|
self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) |
|
self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) |
|
|
|
self.policy_loss_beta = 1e6 |
|
self.embedding_scale = 1e2 |
|
self.reinforce_temperature = 3 |
|
self.base_loss_beta = 1 |
|
|
|
|
|
self.use_thought_prefix = False |
|
self.use_reparam_for_thought_embeddings = False |
|
self.use_upper_triangular = False |
|
self.subtract_mean_reward = False |
|
self.comparison_mode = False |
|
self.gumbel_detach = True |
|
|
|
|
|
self.eval_mode = False |
|
|
|
num_talk = 1 |
|
talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 |
|
if self.use_weighted_talk_head: |
|
talk_output_dim = 1 |
|
else: |
|
talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size |
|
|
|
if not self.merged_lm_and_talk_heads: |
|
if self.use_complex_talk_head: |
|
self.talk_head = nn.ModuleList([nn.Sequential( |
|
nn.Linear(talk_input_dim, config.hidden_size), |
|
nn.ReLU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.ReLU(), |
|
nn.Linear(config.hidden_size, talk_output_dim, bias=False) |
|
)]) |
|
else: |
|
self.talk_head = nn.ModuleList([nn.Sequential( |
|
nn.Linear(talk_input_dim, talk_output_dim, bias=False) |
|
)]) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@torch.no_grad() |
|
def infer( |
|
self, |
|
input_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
batch_size, seq_len = input_ids.shape |
|
|
|
|
|
original_input_ids = input_ids.clone() |
|
original_attention_mask = attention_mask.clone() if attention_mask is not None else None |
|
|
|
|
|
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") |
|
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) |
|
seq_len += 1 |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) |
|
|
|
|
|
continuation_length = self.n_ahead - 2 |
|
new_key_values = past_key_values |
|
|
|
start_time = time.time() |
|
for continuation_idx in range(continuation_length): |
|
outputs = self.model( |
|
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device), |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=new_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=True, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
new_key_values = outputs.past_key_values |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.lm_head(hidden_states) |
|
logits = logits[:, -1, :] |
|
|
|
|
|
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1) |
|
next_token_id = torch.argmax(next_token_logits, dim=-1) |
|
|
|
|
|
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1) |
|
seq_len += 1 |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) |
|
|
|
|
|
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") |
|
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) |
|
seq_len += 1 |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) |
|
|
|
|
|
outputs_before = self.model( |
|
input_ids=original_input_ids, |
|
attention_mask=original_attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states_before = outputs_before[0][:, -1:, :] |
|
|
|
|
|
outputs_after = self.model( |
|
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1), |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=new_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states_after = outputs_after[0][:, -1:, :] |
|
|
|
|
|
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1)) |
|
|
|
|
|
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after |
|
|
|
|
|
logits = self.lm_head(mixed_hidden_states) |
|
return logits |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, MistralForCausalLM |
|
|
|
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
log_dict = self.log_dict if self.training else self.eval_log_dict |
|
|
|
if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after: |
|
raise ValueError("Killed after") |
|
|
|
if not self.training: |
|
n_ahead_talk_to_restore = self.n_ahead_talk |
|
n_passes_to_restore = self.n_passes |
|
self.n_ahead_talk = 1 |
|
self.n_passes = 1 |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual |
|
assert not (self.skip_residual and self.use_policy_loss) |
|
|
|
if self.tokenized_thought_prefix is None and self.use_thought_prefix: |
|
self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"] |
|
|
|
def apply_head(head, states, detach=False): |
|
if detach: |
|
head_weight = head.weight.detach() |
|
else: |
|
head_weight = head.weight |
|
head_weight = head_weight.to(states.device) |
|
return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous() |
|
|
|
def idx_if_sequential(head, idx=0): |
|
if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList): |
|
return idx_if_sequential(head[idx], idx=idx) |
|
return head |
|
|
|
def none_repeat_interleave(x, n): |
|
if x is None: |
|
return x |
|
return x.repeat_interleave(n, dim=0) |
|
|
|
if self.n_passes > 1: |
|
input_ids = none_repeat_interleave(input_ids, self.n_passes) |
|
attention_mask = none_repeat_interleave(attention_mask, self.n_passes) |
|
position_ids = none_repeat_interleave(position_ids, self.n_passes) |
|
inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes) |
|
labels = none_repeat_interleave(labels, self.n_passes) |
|
if past_key_values is not None: |
|
past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values] |
|
cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device) |
|
|
|
self.tokenizer_has_start_thought_token = True |
|
self.tokenizer_has_end_thought_token = True |
|
if self.start_token_id is None: |
|
self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") |
|
if self.start_token_id == 0: |
|
self.start_token_id = self.tokenizer.bos_token_id |
|
self.tokenizer_has_start_thought_token = False |
|
elif self.use_start_thought_token: |
|
|
|
base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0] |
|
if self.initialize_thought_embedding_to_normal: |
|
self.start_embedding.data = torch.zeros_like(self.start_embedding.data) |
|
else: |
|
self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale |
|
self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) |
|
if self.end_token_id is None: |
|
self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") |
|
if self.end_token_id == 0: |
|
self.end_token_id = self.tokenizer.eos_token_id |
|
self.tokenizer_has_end_thought_token = False |
|
elif self.use_end_thought_token: |
|
|
|
base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0] |
|
if self.initialize_thought_embedding_to_normal: |
|
self.end_embedding.data = torch.zeros_like(self.end_embedding.data) |
|
else: |
|
self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale |
|
self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) |
|
|
|
if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode): |
|
self.rm_initialized = True |
|
if not self.use_shallow_talk: |
|
head = self.talk_head[0] |
|
cur_head = head[-1] if isinstance(head, nn.Sequential) else head |
|
talk_input_dim = cur_head.weight.data.shape[1] |
|
talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0] |
|
cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype) |
|
else: |
|
|
|
def lambda_transform(cur_head): |
|
if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]: |
|
return torch.cat([ |
|
torch.eye( |
|
cur_head.weight.data.shape[0], |
|
device=cur_head.weight.device, |
|
dtype=cur_head.weight.dtype |
|
), |
|
torch.zeros( |
|
cur_head.weight.data.shape[0], |
|
cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0], |
|
device=cur_head.weight.device, |
|
dtype=cur_head.weight.dtype |
|
)], dim=1) |
|
return torch.eye( |
|
cur_head.weight.data.shape[0], |
|
device=cur_head.weight.device, |
|
dtype=cur_head.weight.dtype |
|
) |
|
if isinstance(self.talk_head[0], nn.Sequential): |
|
for cur_head in self.talk_head[0]: |
|
|
|
if hasattr(cur_head, "weight"): |
|
cur_head.weight.data = lambda_transform(cur_head) |
|
else: |
|
self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0]) |
|
|
|
loss = None |
|
prev_rm_tokens = None |
|
cur_rm_tokens = None |
|
prev_rm_logits = None |
|
prev_sample_probs = None |
|
did_skip_sampling = None |
|
skip_sampling = None |
|
sample_probs = None |
|
hidden_states = None |
|
logits = None |
|
talk_kl_penalty = None |
|
rm_logits = None |
|
residual_logits = None |
|
probabilities_2d = None |
|
prev_probabilities_2d = None |
|
policy_reward = None |
|
logits_to_output = None |
|
batch_size, seq_len = input_ids.shape |
|
base_input_ids = input_ids.clone() |
|
loss_list = [] |
|
dqn_loss_list = [] |
|
sampled_token_history = [] |
|
sample_probs_history = [] |
|
action_loglikelihoods_list = [] |
|
|
|
if self.use_end_thought_token or self.use_start_thought_token: |
|
if not self.use_reparam_for_thought_embeddings: |
|
start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale |
|
end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale |
|
else: |
|
start_embedding = self.start_embedding * self.embedding_scale |
|
end_embedding = self.end_embedding * self.embedding_scale |
|
base_embeddings = self.model.embed_tokens.weight |
|
if self.train_only_thinking_embedding: |
|
base_embeddings = base_embeddings.detach() |
|
|
|
fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1 |
|
for ahead_idx in range(fwd_iters): |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_len) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_len) |
|
else: |
|
position_ids = position_ids.view(-1, seq_len).long() |
|
|
|
if inputs_embeds is None: |
|
contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any() |
|
contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any() |
|
contains_thought = contains_start or contains_end |
|
if contains_thought: |
|
thought_id = self.start_token_id if contains_start else self.end_token_id |
|
cur_thought_embedding = start_embedding if contains_start else end_embedding |
|
if self.use_reparam_for_thought_embeddings: |
|
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) |
|
inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] |
|
if contains_start: |
|
sampled_start = inputs_embeds.clone().detach() |
|
if contains_end: |
|
sampled_end = inputs_embeds.clone().detach() |
|
else: |
|
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) |
|
else: |
|
with torch.set_grad_enabled(not self.train_only_thinking_embedding): |
|
inputs_embeds = self.model.embed_tokens(input_ids) |
|
|
|
if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode: |
|
if attention_mask is None: |
|
base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device) |
|
base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len) |
|
base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1) |
|
attention_mask = base_attention_mask |
|
breakpoint() |
|
elif attention_mask.dim() == 2: |
|
if seq_len + past_key_values_length != attention_mask.shape[-1]: |
|
breakpoint() |
|
attention_mask = torch.cat( |
|
[torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask], |
|
dim=-1 |
|
) |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_len), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
outputs = self.model( |
|
|
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
prev_hidden_states = hidden_states |
|
hidden_states = outputs[0] |
|
prev_rm_logits = rm_logits |
|
prev_rm_tokens = cur_rm_tokens |
|
|
|
if ahead_idx == 0: |
|
hidden_states_lm = hidden_states |
|
logits = self.lm_head(hidden_states_lm) |
|
base_hidden_states = hidden_states.clone() |
|
initial_loss_logits = logits.clone() |
|
if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start: |
|
logits = logits.detach() |
|
base_hidden_states = base_hidden_states.detach() |
|
if self.optimize_model_only_at_start: |
|
hidden_states = hidden_states.detach() |
|
base_logits = logits.clone() |
|
else: |
|
talk_hidden_states = hidden_states |
|
if self.merged_lm_and_talk_heads: |
|
assert self.no_residual |
|
residual_logits = self.lm_head(hidden_states) |
|
talk_hidden_states = hidden_states |
|
else: |
|
if ahead_idx > self.n_ahead - 1: |
|
cur_base_hidden = torch.cat([ |
|
base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
else: |
|
cur_base_hidden = base_hidden_states |
|
|
|
if self.use_concat_talk_head: |
|
|
|
head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1) |
|
else: |
|
head_input_hidden_states = talk_hidden_states |
|
|
|
residual_logits = self.talk_head[0](head_input_hidden_states) |
|
if self.use_shallow_talk: |
|
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) |
|
residual_logits = residual_logits.to(logits.device) |
|
if self.use_weighted_talk_head: |
|
|
|
residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits |
|
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) |
|
|
|
assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1 |
|
if self.clever_residual: |
|
if ahead_idx >= self.n_ahead - 1: |
|
|
|
cur_base_logits = torch.cat([ |
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
if self.optimize_lm_head_only_at_start: |
|
cur_base_logits = cur_base_logits.detach() |
|
logits = cur_base_logits + residual_logits |
|
else: |
|
logits += residual_logits / self.n_ahead |
|
elif self.cumulative_residual: |
|
if self.residual_talk_head: |
|
if ahead_idx < self.n_ahead: |
|
logits += residual_logits |
|
else: |
|
|
|
cur_base_logits = torch.cat([ |
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
if self.optimize_lm_head_only_at_start: |
|
cur_base_logits = cur_base_logits.detach() |
|
logits = cur_base_logits + residual_logits |
|
else: |
|
if ahead_idx < self.n_ahead: |
|
logits += residual_logits |
|
else: |
|
logits = residual_logits |
|
elif self.skip_residual: |
|
if ahead_idx >= self.n_ahead: |
|
|
|
cur_base_logits = torch.cat([ |
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
if self.optimize_lm_head_only_at_start: |
|
cur_base_logits = cur_base_logits.detach() |
|
logits = cur_base_logits |
|
elif self.no_residual: |
|
logits = residual_logits |
|
else: |
|
logits = base_logits + residual_logits |
|
|
|
attempted = False |
|
talk_loss_list = [] |
|
if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0): |
|
loss = None |
|
attempted = True |
|
|
|
if labels is not None: |
|
for shift_amount in range(self.n_ahead_talk): |
|
|
|
|
|
|
|
if ahead_idx == 0 and self.optimize_lm_head_only_at_start: |
|
loss_logits = initial_loss_logits |
|
else: |
|
loss_logits = logits |
|
shift_logits = loss_logits[..., shift_amount:-1, :].contiguous() |
|
shift_labels = labels[..., 1 + shift_amount:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1).clone() |
|
|
|
shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100 |
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode: |
|
loss_list.append(loss) |
|
talk_loss_list.append(nonzero_mean(loss).detach()) |
|
|
|
if not attempted or self.comparison_mode: |
|
rm_hidden_states = hidden_states |
|
|
|
rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start) |
|
|
|
|
|
if self.tokenizer_has_start_thought_token: |
|
rm_logits[..., self.start_token_id] = -1e10 |
|
if self.tokenizer_has_end_thought_token: |
|
rm_logits[..., self.end_token_id] = -1e10 |
|
probabilities = rm_logits |
|
if probabilities_2d is not None: |
|
prev_probabilities_2d = probabilities_2d.clone() |
|
probabilities_2d = probabilities.view(-1, probabilities.size(-1)) |
|
|
|
did_skip_sampling = skip_sampling |
|
skip_sampling = False |
|
if ahead_idx == 0 and self.use_start_thought_token: |
|
override_token = self.start_token_id |
|
elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]: |
|
override_token = self.tokenized_thought_prefix[..., ahead_idx] |
|
elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token: |
|
override_token = self.end_token_id |
|
else: |
|
override_token = None |
|
if override_token is not None and self.n_ahead > 1: |
|
|
|
probabilities_2d = torch.zeros_like(probabilities_2d) |
|
probabilities_2d[:, override_token] = 1.0 |
|
skip_sampling = True |
|
elif ahead_idx >= self.n_ahead - 1: |
|
if labels is not None: |
|
cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1 |
|
|
|
shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device) |
|
padding = torch.full_like( |
|
labels[..., :cur_talk_n], |
|
self.tokenizer.pad_token_id, |
|
dtype=torch.long, |
|
device=shift_labels.device |
|
) |
|
new_rm_tokens = torch.cat( |
|
[shift_labels, padding], |
|
dim=-1 |
|
) |
|
|
|
probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype) |
|
skip_sampling = True |
|
else: |
|
continue |
|
temperature = self.gumbel_temperature if self.training else 0.001 |
|
prev_sample_probs = sample_probs |
|
sample_probs = probabilities_2d |
|
if ahead_idx < self.n_ahead - 1 and not skip_sampling: |
|
probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1) |
|
if self.gumbel_detach: |
|
probabilities_2d = probabilities_2d.detach() |
|
sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu()) |
|
|
|
contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0) |
|
contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0) |
|
contains_thought = contains_start or contains_end |
|
|
|
if not contains_thought: |
|
with torch.set_grad_enabled(not self.train_only_thinking_embedding): |
|
inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype)) |
|
else: |
|
thought_id = self.start_token_id if contains_start else self.end_token_id |
|
cur_thought_embedding = start_embedding if contains_start else end_embedding |
|
if self.use_reparam_for_thought_embeddings: |
|
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) |
|
inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] |
|
if contains_start: |
|
sampled_start = inputs_embeds.clone().detach() |
|
else: |
|
sampled_end = inputs_embeds.clone().detach() |
|
else: |
|
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) |
|
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) |
|
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) |
|
|
|
if len(attention_mask.shape) == 2: |
|
breakpoint() |
|
else: |
|
original_attention = attention_mask[..., :attention_mask.shape[-2]] |
|
if self.use_upper_triangular: |
|
new_attention = original_attention |
|
else: |
|
original_attention = original_attention == attention_mask.max() |
|
|
|
if not attention_mask.dtype == torch.bfloat16: |
|
new_attention = torch.eye( |
|
seq_len, dtype=attention_mask.dtype, device=attention_mask.device |
|
) |
|
else: |
|
new_attention = torch.eye( |
|
seq_len, dtype=torch.float32, device=attention_mask.device |
|
).to(attention_mask.dtype) |
|
|
|
new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1) |
|
new_attention = new_attention * original_attention |
|
new_attention[new_attention == 0] = attention_mask.min() |
|
new_attention[new_attention == 1] = attention_mask.max() |
|
attention_mask = torch.cat([attention_mask, new_attention], dim=-1) |
|
past_key_values = outputs.past_key_values |
|
position_ids = position_ids + 1 |
|
|
|
if labels is not None and (self.n_ahead > 1 or not self.base_original_mode): |
|
|
|
|
|
|
|
if ahead_idx == 0 and self.optimize_lm_head_only_at_start: |
|
loss_logits = initial_loss_logits |
|
else: |
|
loss_logits = logits |
|
shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1)) |
|
shift_logits = loss_logits[..., :-shift_idx, :].contiguous() |
|
shift_labels = labels[..., shift_idx:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
|
shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels) |
|
unreduced_loss = loss_fct(shift_logits, shift_labels) |
|
if torch.any(unreduced_loss != unreduced_loss): |
|
raise ValueError("NaN loss") |
|
unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1) |
|
loss_list.append(unreduced_loss) |
|
|
|
|
|
if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token): |
|
|
|
previous_loss = loss_list[-2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ahead_idx < self.n_ahead - 1: |
|
shift_amount = 0 |
|
original_dqn_reward = (previous_loss - unreduced_loss).detach() |
|
if self.first_and_last_mode: |
|
original_dqn_reward = original_dqn_reward * 0.0 |
|
else: |
|
|
|
|
|
shift_amount = max(0, ahead_idx - (self.n_ahead - 1)) |
|
|
|
|
|
|
|
|
|
cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach() |
|
cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous() |
|
|
|
cur_policy_loss_fct = CrossEntropyLoss(reduction="none") |
|
cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size) |
|
cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone() |
|
|
|
cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100 |
|
cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device) |
|
cur_policy_reward_base_loss = loss_fct( |
|
cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device) |
|
).reshape(logits.shape[0], -1) |
|
original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss |
|
|
|
if not did_skip_sampling: |
|
nonzero_indices = prev_probabilities_2d.nonzero() |
|
action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]] |
|
action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount] |
|
action_loglikelihoods_list.append(action_loglikelihoods_2d) |
|
if policy_reward is None: |
|
policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] |
|
else: |
|
if self.n_ahead_talk > shift_amount: |
|
added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] |
|
else: |
|
added_reward = original_dqn_reward |
|
policy_reward += added_reward |
|
|
|
if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2: |
|
|
|
if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token): |
|
|
|
|
|
|
|
if self.use_start_thought_token: |
|
exp_start_std = torch.exp(start_embedding[1]) |
|
start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi) |
|
start_loglikelihood = start_loglikelihood.mean(dim=-1) |
|
if self.use_end_thought_token: |
|
exp_end_std = torch.exp(end_embedding[1]) |
|
end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi) |
|
end_loglikelihood = end_loglikelihood.mean(dim=-1) |
|
|
|
if self.use_end_thought_token and self.use_policy_loss_for_end_thought: |
|
action_loglikelihoods_list.append(end_loglikelihood) |
|
if self.use_start_thought_token: |
|
action_loglikelihoods_list.append(start_loglikelihood) |
|
|
|
if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode: |
|
with torch.no_grad(): |
|
|
|
filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten() |
|
filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id |
|
filtered_tokens = filtered_tokens[filtered_tokens_mask] |
|
filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten() |
|
filtered_rewards = filtered_rewards[filtered_tokens_mask] |
|
|
|
abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()) |
|
abs_reward_list = abs_reward_list[filtered_tokens_mask] |
|
medium_quantile = np.quantile(abs_reward_list, 0.5) |
|
upper_quantile = np.quantile(abs_reward_list, 0.95) |
|
|
|
save_tokens_with_rewards_to_pdf( |
|
filtered_tokens, |
|
[0] + filtered_rewards.tolist(), |
|
self.tokenizer, |
|
output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf", |
|
eps=medium_quantile, |
|
eps2=upper_quantile, |
|
) |
|
|
|
def plot_kde(data, losses): |
|
sns.set(style="whitegrid") |
|
|
|
sns.kdeplot(data, fill=True) |
|
|
|
plt.title("KDE Plot") |
|
plt.xlabel("Value") |
|
plt.ylabel("Density") |
|
|
|
plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") |
|
|
|
plt.close() |
|
|
|
|
|
base_colors = sns.color_palette("light:#5A9", n_colors=256) |
|
base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors) |
|
log_norm = LogNorm(vmin=1e-3, vmax=10) |
|
|
|
sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0) |
|
|
|
plt.xlim(-1, 1) |
|
plt.ylim(0, 25) |
|
plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") |
|
plt.close() |
|
|
|
self.all_rewards.extend(filtered_rewards) |
|
self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy()) |
|
plot_kde(self.all_rewards, self.all_unreduced_losses) |
|
|
|
for action_loglikelihoods_2d in action_loglikelihoods_list: |
|
train_policy_reward = policy_reward |
|
|
|
|
|
if self.trice_mode and self.n_passes > 1: |
|
batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1]) |
|
|
|
train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True) |
|
train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1]) |
|
|
|
if self.subtract_mean_reward: |
|
train_policy_reward = train_policy_reward - train_policy_reward.mean() |
|
if self.remove_negative_rewards: |
|
fixed_policy_reward = train_policy_reward.detach().clamp(min=0) |
|
else: |
|
fixed_policy_reward = train_policy_reward.detach() |
|
actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device) |
|
if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts: |
|
|
|
break |
|
dqn_loss_list.append(actor_loss.mean()) |
|
|
|
if loss_list: |
|
if self.first_and_last_mode: |
|
loss = sum( |
|
self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk) |
|
) * (1 - self.original_loss_weight) / self.n_ahead_talk |
|
loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight |
|
|
|
|
|
for i in range(1, len(loss_list) - self.n_ahead_talk): |
|
loss_list[i] = loss_list[i] * math.nan |
|
elif self.first_only: |
|
loss = self.loss_mean(loss_list[0]) |
|
elif self.final_only_mode: |
|
loss = sum( |
|
self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1) |
|
) / self.n_ahead_talk |
|
else: |
|
loss = None |
|
for i in range(len(loss_list)): |
|
cur_loss = self.loss_mean(loss_list[i]) |
|
if loss is not None: |
|
loss = loss + cur_loss.to(loss.device) |
|
else: |
|
loss = cur_loss |
|
loss = loss / len(loss_list) |
|
|
|
loss = loss * self.base_loss_beta |
|
|
|
if dqn_loss_list: |
|
dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list) |
|
if self.include_policy_loss: |
|
if loss is not None: |
|
loss += dqn_loss * self.policy_loss_beta |
|
else: |
|
loss = dqn_loss * self.policy_loss_beta |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
base_log_dict = { |
|
f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list)) |
|
} |
|
|
|
if loss is not None: |
|
base_log_dict["loss_train"] = loss.item() |
|
|
|
for loss_key, loss_val in base_log_dict.items(): |
|
log_dict[loss_key] += loss_val / self.n_tokens_print |
|
|
|
if self.use_policy_loss and policy_reward is not None: |
|
log_dict["policy_loss"] += dqn_loss / self.n_tokens_print |
|
log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print |
|
|
|
if not loss_list: |
|
if loss is not None: |
|
log_dict["loss_0"] += loss / self.n_tokens_print |
|
else: |
|
log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print |
|
log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print |
|
|
|
|
|
if loss_list: |
|
for i in range(len(loss_list)): |
|
talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1) |
|
if not talk_loss_list: |
|
cur_talk_loss = nonzero_mean(loss_list[0]) |
|
else: |
|
cur_talk_loss = talk_loss_list[talk_idx] |
|
log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print |
|
if self.training: |
|
self.training_steps += 1 |
|
|
|
if not self.training: |
|
self.n_ahead_talk = n_ahead_talk_to_restore |
|
self.n_passes = n_passes_to_restore |
|
return CausalLMOutputWithPast( |
|
loss=loss if loss is not None else None, |
|
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
class MistralQuietForCausalLM(MistralPreTrainedModel): |
|
'''Closed thoughts''' |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = MistralModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.mixing_head = nn.Sequential( |
|
nn.Linear(config.hidden_size * 2, config.hidden_size), |
|
nn.ReLU(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
self.max_thoughts = config.max_thoughts |
|
self.thought_length = config.thought_length |
|
self.use_policy_loss = True |
|
self.remove_negative_rewards = True |
|
self.post_init() |
|
|
|
def calculate_policy_loss(self, thoughts, rewards): |
|
thought_log_probs = [] |
|
for thought in thoughts: |
|
thought_log_prob = self.lm_head(thought).log_softmax(dim=-1) |
|
thought_log_probs.append(thought_log_prob) |
|
|
|
thought_log_probs = torch.stack(thought_log_probs, dim=1) |
|
thought_probs = torch.exp(thought_log_probs) |
|
|
|
policy_loss = -torch.mean(thought_log_probs * rewards.unsqueeze(-1).unsqueeze(-1)) |
|
|
|
return policy_loss |
|
|
|
def _generate_thoughts(self, hidden_states, max_length): |
|
batch_size = hidden_states.size(0) |
|
thought_ids = torch.zeros((batch_size, self.config.max_thoughts, max_length), dtype=torch.long, device=hidden_states.device) |
|
thought_embeddings = [] |
|
|
|
for i in range(self.config.max_thoughts): |
|
thought_input_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=hidden_states.device) |
|
thought_outputs = self.generate( |
|
input_ids=thought_input_ids, |
|
max_length=max_length, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.95, |
|
pad_token_id=self.config.pad_token_id, |
|
eos_token_id=self.config.eos_token_id, |
|
) |
|
thought_ids[:, i, :] = thought_outputs |
|
thought_embeddings.append(self.get_input_embeddings()(thought_outputs)) |
|
|
|
thought_embeddings = torch.stack(thought_embeddings, dim=1) |
|
return thought_ids, thought_embeddings |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, QuietForCausalLM |
|
|
|
>>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1") |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
) |
|
hidden_states = outputs.last_hidden_state |
|
logits = self.lm_head(hidden_states) |
|
|
|
thought_ids, thought_embeddings = self._generate_thoughts(hidden_states, max_length=self.config.thought_length) |
|
thought_hidden_states = self.model(inputs_embeds=thought_embeddings).last_hidden_state |
|
|
|
|
|
thought_logits = self.lm_head(thought_hidden_states) |
|
|
|
|
|
mixed_logits = logits.unsqueeze(1) + self.mixing_head(thought_logits) |
|
mixed_logits = mixed_logits.view(-1, mixed_logits.size(-1)) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = mixed_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if self.use_policy_loss: |
|
rewards = loss.detach().unsqueeze(1).repeat(1, self.max_thoughts) |
|
if self.remove_negative_rewards: |
|
rewards = torch.clamp(rewards, min=0) |
|
policy_loss = self.calculate_policy_loss(thought_ids, rewards) |
|
loss = loss + policy_loss |
|
else: |
|
loss = None |
|
|
|
if not return_dict: |
|
output = (mixed_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss if loss is not None else None, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Mistral Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
|
|
class MistralForSequenceClassification(MistralPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = MistralModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@add_start_docstrings( |
|
""" |
|
The Mistral Model transformer with a token classification head on top (a linear layer on top of the hidden-states |
|
output) e.g. for Named-Entity-Recognition (NER) tasks. |
|
""", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
|
|
class MistralForTokenClassification(MistralPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = MistralModel(config) |
|
if getattr(config, "classifier_dropout", None) is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif getattr(config, "hidden_dropout", None) is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.score(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
@add_start_docstrings( |
|
""" |
|
The Mistral Model transformer with a span classification head on top for extractive question-answering tasks like |
|
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
MISTRAL_START_DOCSTRING, |
|
) |
|
class MistralForQuestionAnswering(MistralPreTrainedModel): |
|
base_model_prefix = "transformer" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = MistralModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, 2) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.transformer.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.transformer.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class MistralTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is |
|
no padding token in the original model. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by |
|
attention mechanisms or loss computation. |
|
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): |
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for |
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, |
|
to set: |
|
|
|
- `enable_sampling`: Enable subword regularization. |
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. |
|
|
|
- `nbest_size = {0,1}`: No sampling is performed. |
|
- `nbest_size > 1`: samples from the nbest_size results. |
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) |
|
using forward-filtering-and-backward-sampling algorithm. |
|
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for |
|
BPE-dropout. |
|
|
|
add_bos_token (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an `bos_token` at the start of sequences. |
|
add_eos_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an `eos_token` at the end of sequences. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like |
|
extra spaces. |
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`): |
|
Whether or not the default system prompt for Llama should be used. |
|
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add spaces between special tokens. |
|
legacy (`bool`, *optional*): |
|
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 |
|
and #25224 which includes fixes to properly handle tokens that appear after special tokens. |
|
Make sure to also set `from_slow` to `True`. |
|
A simple example: |
|
|
|
- `legacy=True`: |
|
```python |
|
>>> from transformers import LlamaTokenizerFast |
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True) |
|
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.' |
|
[1, 15043, 29871, 1, 869] |
|
``` |
|
- `legacy=False`: |
|
```python |
|
>>> from transformers import LlamaTokenizerFast |
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True) |
|
>>> tokenizer.encode("Hello <s>.") # 29889 is '.' |
|
[1, 15043, 29871, 1, 29889] |
|
``` |
|
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. |
|
add_prefix_space (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token=None, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
add_bos_token=True, |
|
add_eos_token=False, |
|
clean_up_tokenization_spaces=False, |
|
use_default_system_prompt=False, |
|
spaces_between_special_tokens=False, |
|
legacy=None, |
|
add_prefix_space=True, |
|
**kwargs, |
|
): |
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token |
|
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token |
|
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token |
|
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token |
|
|
|
if legacy is None: |
|
logger.warning_once( |
|
f"You are using the default legacy behaviour of the {self.__class__}. This is" |
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." |
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" |
|
" means, and thoroughly read the reason why this was added as explained in" |
|
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file" |
|
" you can ignore this message" |
|
) |
|
legacy = True |
|
|
|
self.legacy = legacy |
|
self.vocab_file = vocab_file |
|
self.add_bos_token = add_bos_token |
|
self.add_eos_token = add_eos_token |
|
self.use_default_system_prompt = use_default_system_prompt |
|
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) |
|
self.add_prefix_space = add_prefix_space |
|
|
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
sp_model_kwargs=self.sp_model_kwargs, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
use_default_system_prompt=use_default_system_prompt, |
|
spaces_between_special_tokens=spaces_between_special_tokens, |
|
legacy=legacy, |
|
add_prefix_space=add_prefix_space, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def unk_token_length(self): |
|
return len(self.sp_model.encode(str(self.unk_token))) |
|
|
|
|
|
def get_spm_processor(self, from_slow=False): |
|
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
if self.legacy or from_slow: |
|
tokenizer.Load(self.vocab_file) |
|
return tokenizer |
|
|
|
with open(self.vocab_file, "rb") as f: |
|
sp_model = f.read() |
|
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") |
|
model = model_pb2.ModelProto.FromString(sp_model) |
|
normalizer_spec = model_pb2.NormalizerSpec() |
|
normalizer_spec.add_dummy_prefix = False |
|
model.normalizer_spec.MergeFrom(normalizer_spec) |
|
sp_model = model.SerializeToString() |
|
tokenizer.LoadFromSerializedProto(sp_model) |
|
return tokenizer |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto() |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return self.sp_model.get_piece_size() |
|
|
|
def get_vocab(self): |
|
"""Returns vocab as a dict""" |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
|
|
def tokenize(self, text: "TextInput", **kwargs) -> List[str]: |
|
""" |
|
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the |
|
first token is special. |
|
""" |
|
if self.legacy or len(text) == 0: |
|
return super().tokenize(text, **kwargs) |
|
|
|
text = text.replace(SPIECE_UNDERLINE, " ") |
|
if self.add_prefix_space: |
|
text = SPIECE_UNDERLINE + text |
|
|
|
tokens = super().tokenize(text, **kwargs) |
|
|
|
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: |
|
tokens = tokens[1:] |
|
return tokens |
|
|
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" |
|
Returns a tokenized string. |
|
|
|
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any |
|
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give |
|
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the |
|
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. |
|
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. |
|
""" |
|
tokens = self.sp_model.encode(text, out_type=str) |
|
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): |
|
return tokens |
|
|
|
|
|
tokens = self.sp_model.encode(self.unk_token + text, out_type=str) |
|
|
|
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = self.sp_model.IdToPiece(index) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
|
|
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: |
|
tokens[0] = tokens[0][1:] |
|
|
|
current_sub_tokens = [] |
|
out_string = "" |
|
prev_is_special = False |
|
for i, token in enumerate(tokens): |
|
|
|
if token in self.all_special_tokens: |
|
if not prev_is_special and i != 0 and self.legacy: |
|
out_string += " " |
|
out_string += self.sp_model.decode(current_sub_tokens) + token |
|
prev_is_special = True |
|
current_sub_tokens = [] |
|
else: |
|
if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE): |
|
out_string += " " |
|
current_sub_tokens.append(token) |
|
prev_is_special = False |
|
out_string += self.sp_model.decode(current_sub_tokens) |
|
return out_string |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (out_vocab_file,) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
bos_token_id = [1] if self.add_bos_token else [] |
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
if token_ids_1 is None: |
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id |
|
return ( |
|
bos_token_id |
|
+ ([0] * len(token_ids_0)) |
|
+ eos_token_id |
|
+ bos_token_id |
|
+ ([0] * len(token_ids_1)) |
|
+ eos_token_id |
|
) |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT |
|
sequence pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
if token_ids_1 is None, only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of ids. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) |
|
|
|
if token_ids_1 is not None: |
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) |
|
|
|
return output |
|
|
|
@property |
|
def default_chat_template(self): |
|
""" |
|
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. |
|
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict |
|
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering |
|
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which |
|
results in an unusual token ordering when it is present. This template should definitely be changed if you wish |
|
to fine-tune a model with more flexible role ordering! |
|
|
|
The output should look something like: |
|
|
|
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> |
|
<bos>[INST] Prompt [/INST] |
|
|
|
The reference for this chat template is [this code |
|
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) |
|
in the original repository. |
|
""" |
|
template = ( |
|
"{% if messages[0]['role'] == 'system' %}" |
|
"{% set loop_messages = messages[1:] %}" |
|
"{% set system_message = messages[0]['content'] %}" |
|
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" |
|
"{% else %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = false %}" |
|
"{% endif %}" |
|
"{% for message in loop_messages %}" |
|
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" |
|
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" |
|
"{% endif %}" |
|
"{% if loop.index0 == 0 and system_message != false %}" |
|
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" |
|
"{% else %}" |
|
"{% set content = message['content'] %}" |
|
"{% endif %}" |
|
"{% if message['role'] == 'user' %}" |
|
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" |
|
"{% elif message['role'] == 'system' %}" |
|
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" |
|
"{% elif message['role'] == 'assistant' %}" |
|
"{{ ' ' + content.strip() + ' ' + eos_token }}" |
|
"{% endif %}" |
|
"{% endfor %}" |
|
) |
|
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") |
|
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") |
|
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) |
|
|
|
return template |
|
class MistralTokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. |
|
|
|
This uses notably ByteFallback and no normalization. |
|
|
|
```python |
|
>>> from transformers import LlamaTokenizerFast |
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") |
|
>>> tokenizer.encode("Hello this is a test") |
|
[1, 15043, 445, 338, 263, 1243] |
|
``` |
|
|
|
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or |
|
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the |
|
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout |
|
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. |
|
|
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`, *optional*): |
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that |
|
contains the vocabulary necessary to instantiate a tokenizer. |
|
tokenizer_file (`str`, *optional*): |
|
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that |
|
contains everything needed to load the tokenizer. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like |
|
extra spaces. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
add_bos_token (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an `bos_token` at the start of sequences. |
|
add_eos_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an `eos_token` at the end of sequences. |
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`): |
|
Whether or not the default system prompt for Llama should be used |
|
legacy (`bool`, *optional*): |
|
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 |
|
and #25224 which includes fixes to properly handle tokens that appear after special tokens. |
|
Make sure to also set `from_slow` to `True`. |
|
A simple example: |
|
|
|
- `legacy=True`: |
|
```python |
|
>>> from transformers import LlamaTokenizerFast |
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True) |
|
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.' |
|
[1, 15043, 29871, 1, 869] |
|
``` |
|
- `legacy=False`: |
|
```python |
|
>>> from transformers import LlamaTokenizerFast |
|
|
|
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True) |
|
>>> tokenizer.encode("Hello <s>.") # 29889 is '.' |
|
[1, 15043, 29871, 1, 29889] |
|
``` |
|
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. |
|
add_prefix_space (`bool`, *optional*): |
|
Whether or not the tokenizer should automatically add a prefix space |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
slow_tokenizer_class = MistralTokenizer |
|
padding_side = "left" |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
tokenizer_file=None, |
|
clean_up_tokenization_spaces=False, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
add_bos_token=True, |
|
add_eos_token=False, |
|
use_default_system_prompt=False, |
|
legacy=None, |
|
add_prefix_space=None, |
|
**kwargs, |
|
): |
|
if legacy is None: |
|
logger.warning_once( |
|
f"You are using the default legacy behaviour of the {self.__class__}. This is" |
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." |
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" |
|
" means, and thoroughly read the reason why this was added as explained in" |
|
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file" |
|
" you can ignore this message." |
|
) |
|
legacy = True |
|
self.legacy = legacy |
|
|
|
if add_prefix_space is not None: |
|
kwargs["from_slow"] = True |
|
|
|
super().__init__( |
|
vocab_file=vocab_file, |
|
tokenizer_file=tokenizer_file, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
use_default_system_prompt=use_default_system_prompt, |
|
add_prefix_space=add_prefix_space, |
|
legacy=legacy, |
|
**kwargs, |
|
) |
|
self._add_bos_token = add_bos_token |
|
self._add_eos_token = add_eos_token |
|
self.update_post_processor() |
|
self.use_default_system_prompt = use_default_system_prompt |
|
self.vocab_file = vocab_file |
|
|
|
@property |
|
def can_save_slow_tokenizer(self) -> bool: |
|
return os.path.isfile(self.vocab_file) if self.vocab_file else False |
|
|
|
def update_post_processor(self): |
|
""" |
|
Updates the underlying post processor with the current `bos_token` and `eos_token`. |
|
""" |
|
bos = self.bos_token |
|
bos_token_id = self.bos_token_id |
|
if bos is None and self.add_bos_token: |
|
raise ValueError("add_bos_token = True but bos_token = None") |
|
|
|
eos = self.eos_token |
|
eos_token_id = self.eos_token_id |
|
if eos is None and self.add_eos_token: |
|
raise ValueError("add_eos_token = True but eos_token = None") |
|
|
|
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" |
|
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" |
|
|
|
special_tokens = [] |
|
if self.add_bos_token: |
|
special_tokens.append((bos, bos_token_id)) |
|
if self.add_eos_token: |
|
special_tokens.append((eos, eos_token_id)) |
|
self._tokenizer.post_processor = processors.TemplateProcessing( |
|
single=single, pair=pair, special_tokens=special_tokens |
|
) |
|
|
|
@property |
|
def add_eos_token(self): |
|
return self._add_eos_token |
|
|
|
@property |
|
def add_bos_token(self): |
|
return self._add_bos_token |
|
|
|
@add_eos_token.setter |
|
def add_eos_token(self, value): |
|
self._add_eos_token = value |
|
self.update_post_processor() |
|
|
|
@add_bos_token.setter |
|
def add_bos_token(self, value): |
|
self._add_bos_token = value |
|
self.update_post_processor() |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not self.can_save_slow_tokenizer: |
|
raise ValueError( |
|
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " |
|
"tokenizer." |
|
) |
|
|
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
|
|
return (out_vocab_file,) |
|
|
|
@property |
|
|
|
def default_chat_template(self): |
|
""" |
|
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. |
|
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict |
|
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering |
|
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which |
|
results in an unusual token ordering when it is present. This template should definitely be changed if you wish |
|
to fine-tune a model with more flexible role ordering! |
|
|
|
The output should look something like: |
|
|
|
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> |
|
<bos>[INST] Prompt [/INST] |
|
|
|
The reference for this chat template is [this code |
|
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) |
|
in the original repository. |
|
""" |
|
template = ( |
|
"{% if messages[0]['role'] == 'system' %}" |
|
"{% set loop_messages = messages[1:] %}" |
|
"{% set system_message = messages[0]['content'] %}" |
|
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" |
|
"{% else %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = false %}" |
|
"{% endif %}" |
|
"{% for message in loop_messages %}" |
|
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" |
|
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" |
|
"{% endif %}" |
|
"{% if loop.index0 == 0 and system_message != false %}" |
|
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" |
|
"{% else %}" |
|
"{% set content = message['content'] %}" |
|
"{% endif %}" |
|
"{% if message['role'] == 'user' %}" |
|
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" |
|
"{% elif message['role'] == 'system' %}" |
|
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" |
|
"{% elif message['role'] == 'assistant' %}" |
|
"{{ ' ' + content.strip() + ' ' + eos_token }}" |
|
"{% endif %}" |
|
"{% endfor %}" |
|
) |
|
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") |
|
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") |
|
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) |
|
|
|
return template |
|
|
|
|
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|