Upload modeling_mistral.py
Browse files- modeling_mistral.py +356 -386
modeling_mistral.py
CHANGED
@@ -662,267 +662,6 @@ class MistralPreTrainedModel(PreTrainedModel):
|
|
662 |
module.weight.data[module.padding_idx].zero_()
|
663 |
|
664 |
|
665 |
-
@add_start_docstrings(
|
666 |
-
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
667 |
-
MISTRAL_START_DOCSTRING,
|
668 |
-
)
|
669 |
-
class MistralModel(MistralPreTrainedModel):
|
670 |
-
"""
|
671 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
672 |
-
|
673 |
-
Args:
|
674 |
-
config: MistralConfig
|
675 |
-
"""
|
676 |
-
|
677 |
-
def __init__(self, config: MistralConfig):
|
678 |
-
super().__init__(config)
|
679 |
-
self.padding_idx = config.pad_token_id
|
680 |
-
self.vocab_size = config.vocab_size
|
681 |
-
|
682 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
683 |
-
self.layers = nn.ModuleList(
|
684 |
-
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
685 |
-
)
|
686 |
-
self._attn_implementation = config._attn_implementation
|
687 |
-
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
688 |
-
|
689 |
-
self.gradient_checkpointing = False
|
690 |
-
# Initialize weights and apply final processing
|
691 |
-
self.post_init()
|
692 |
-
|
693 |
-
def get_input_embeddings(self):
|
694 |
-
return self.embed_tokens
|
695 |
-
|
696 |
-
def set_input_embeddings(self, value):
|
697 |
-
self.embed_tokens = value
|
698 |
-
|
699 |
-
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
700 |
-
def forward(
|
701 |
-
self,
|
702 |
-
input_ids: torch.LongTensor = None,
|
703 |
-
attention_mask: Optional[torch.Tensor] = None,
|
704 |
-
position_ids: Optional[torch.LongTensor] = None,
|
705 |
-
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
706 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
707 |
-
use_cache: Optional[bool] = None,
|
708 |
-
output_attentions: Optional[bool] = None,
|
709 |
-
output_hidden_states: Optional[bool] = None,
|
710 |
-
return_dict: Optional[bool] = None,
|
711 |
-
cache_position: Optional[torch.LongTensor] = None,
|
712 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
713 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
714 |
-
output_hidden_states = (
|
715 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
716 |
-
)
|
717 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
718 |
-
|
719 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
720 |
-
|
721 |
-
# retrieve input_ids and inputs_embeds
|
722 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
723 |
-
raise ValueError(
|
724 |
-
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
725 |
-
)
|
726 |
-
|
727 |
-
if self.gradient_checkpointing and self.training and use_cache:
|
728 |
-
logger.warning_once(
|
729 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
730 |
-
)
|
731 |
-
use_cache = False
|
732 |
-
|
733 |
-
if inputs_embeds is None:
|
734 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
735 |
-
|
736 |
-
return_legacy_cache = False
|
737 |
-
if use_cache and not isinstance(past_key_values, Cache):
|
738 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
739 |
-
return_legacy_cache = True
|
740 |
-
logger.warning_once(
|
741 |
-
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
742 |
-
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
743 |
-
)
|
744 |
-
|
745 |
-
if cache_position is None:
|
746 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
747 |
-
cache_position = torch.arange(
|
748 |
-
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
749 |
-
)
|
750 |
-
|
751 |
-
if position_ids is None:
|
752 |
-
position_ids = cache_position.unsqueeze(0)
|
753 |
-
|
754 |
-
causal_mask = self._update_causal_mask(
|
755 |
-
attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions
|
756 |
-
)
|
757 |
-
|
758 |
-
hidden_states = inputs_embeds
|
759 |
-
|
760 |
-
# decoder layers
|
761 |
-
all_hidden_states = () if output_hidden_states else None
|
762 |
-
all_self_attns = () if output_attentions else None
|
763 |
-
next_decoder_cache = None
|
764 |
-
|
765 |
-
for decoder_layer in self.layers:
|
766 |
-
if output_hidden_states:
|
767 |
-
all_hidden_states += (hidden_states,)
|
768 |
-
|
769 |
-
if self.gradient_checkpointing and self.training:
|
770 |
-
layer_outputs = self._gradient_checkpointing_func(
|
771 |
-
decoder_layer.__call__,
|
772 |
-
hidden_states,
|
773 |
-
causal_mask,
|
774 |
-
position_ids,
|
775 |
-
past_key_values,
|
776 |
-
output_attentions,
|
777 |
-
use_cache,
|
778 |
-
cache_position,
|
779 |
-
)
|
780 |
-
else:
|
781 |
-
layer_outputs = decoder_layer(
|
782 |
-
hidden_states,
|
783 |
-
attention_mask=causal_mask,
|
784 |
-
position_ids=position_ids,
|
785 |
-
past_key_value=past_key_values,
|
786 |
-
output_attentions=output_attentions,
|
787 |
-
use_cache=use_cache,
|
788 |
-
cache_position=cache_position,
|
789 |
-
)
|
790 |
-
|
791 |
-
hidden_states = layer_outputs[0]
|
792 |
-
|
793 |
-
if use_cache:
|
794 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
795 |
-
|
796 |
-
if output_attentions:
|
797 |
-
all_self_attns += (layer_outputs[1],)
|
798 |
-
|
799 |
-
hidden_states = self.norm(hidden_states)
|
800 |
-
|
801 |
-
# add hidden states from the last decoder layer
|
802 |
-
if output_hidden_states:
|
803 |
-
all_hidden_states += (hidden_states,)
|
804 |
-
|
805 |
-
next_cache = next_decoder_cache if use_cache else None
|
806 |
-
if return_legacy_cache:
|
807 |
-
next_cache = next_cache.to_legacy_cache()
|
808 |
-
|
809 |
-
if not return_dict:
|
810 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
811 |
-
return BaseModelOutputWithPast(
|
812 |
-
last_hidden_state=hidden_states,
|
813 |
-
past_key_values=next_cache,
|
814 |
-
hidden_states=all_hidden_states,
|
815 |
-
attentions=all_self_attns,
|
816 |
-
)
|
817 |
-
|
818 |
-
def _update_causal_mask(
|
819 |
-
self,
|
820 |
-
attention_mask: torch.Tensor,
|
821 |
-
input_tensor: torch.Tensor,
|
822 |
-
cache_position: torch.Tensor,
|
823 |
-
past_key_values: Cache,
|
824 |
-
use_cache: bool,
|
825 |
-
output_attentions: bool,
|
826 |
-
):
|
827 |
-
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
828 |
-
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
829 |
-
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
830 |
-
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
831 |
-
|
832 |
-
if self._attn_implementation == "flash_attention_2":
|
833 |
-
if attention_mask is not None and use_cache:
|
834 |
-
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
835 |
-
if is_padding_right:
|
836 |
-
raise ValueError(
|
837 |
-
"You are attempting to perform batched generation with padding_side='right'"
|
838 |
-
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
839 |
-
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
840 |
-
)
|
841 |
-
if attention_mask is not None and 0.0 in attention_mask:
|
842 |
-
return attention_mask
|
843 |
-
return None
|
844 |
-
|
845 |
-
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
846 |
-
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
847 |
-
# to infer the attention mask.
|
848 |
-
|
849 |
-
# cache_position must be valid here no matter which cache we use
|
850 |
-
past_seen_tokens = cache_position[0] if past_key_values is not None else 0
|
851 |
-
using_static_cache = isinstance(past_key_values, StaticCache)
|
852 |
-
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
853 |
-
|
854 |
-
if (
|
855 |
-
self.config._attn_implementation == "sdpa"
|
856 |
-
and not (using_static_cache or using_sliding_window_cache)
|
857 |
-
and not output_attentions
|
858 |
-
):
|
859 |
-
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
860 |
-
attention_mask,
|
861 |
-
inputs_embeds=input_tensor,
|
862 |
-
past_key_values_length=past_seen_tokens,
|
863 |
-
sliding_window=self.config.sliding_window,
|
864 |
-
is_training=self.training,
|
865 |
-
):
|
866 |
-
return None
|
867 |
-
|
868 |
-
dtype, device = input_tensor.dtype, input_tensor.device
|
869 |
-
min_dtype = torch.finfo(dtype).min
|
870 |
-
sequence_length = input_tensor.shape[1]
|
871 |
-
# SlidingWindowCache
|
872 |
-
if using_sliding_window_cache:
|
873 |
-
target_length = max(sequence_length, self.config.sliding_window)
|
874 |
-
# StaticCache
|
875 |
-
elif using_static_cache:
|
876 |
-
target_length = past_key_values.get_max_length()
|
877 |
-
# DynamicCache or no cache
|
878 |
-
else:
|
879 |
-
target_length = (
|
880 |
-
attention_mask.shape[-1]
|
881 |
-
if isinstance(attention_mask, torch.Tensor)
|
882 |
-
else past_seen_tokens + sequence_length + 1
|
883 |
-
)
|
884 |
-
|
885 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
886 |
-
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
887 |
-
if attention_mask.max() != 0:
|
888 |
-
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
889 |
-
causal_mask = attention_mask
|
890 |
-
else:
|
891 |
-
causal_mask = torch.full(
|
892 |
-
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
893 |
-
)
|
894 |
-
exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
895 |
-
if self.config.sliding_window is not None:
|
896 |
-
if not using_sliding_window_cache or sequence_length > self.config.sliding_window:
|
897 |
-
exclude_mask.bitwise_or_(
|
898 |
-
torch.arange(target_length, device=device)
|
899 |
-
<= (cache_position.reshape(-1, 1) - self.config.sliding_window)
|
900 |
-
)
|
901 |
-
causal_mask *= exclude_mask
|
902 |
-
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
903 |
-
if attention_mask is not None:
|
904 |
-
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
905 |
-
if attention_mask.dim() == 2:
|
906 |
-
mask_length = attention_mask.shape[-1]
|
907 |
-
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
908 |
-
padding_mask = padding_mask == 0
|
909 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
910 |
-
padding_mask, min_dtype
|
911 |
-
)
|
912 |
-
|
913 |
-
if (
|
914 |
-
self.config._attn_implementation == "sdpa"
|
915 |
-
and attention_mask is not None
|
916 |
-
and attention_mask.device.type == "cuda"
|
917 |
-
and not output_attentions
|
918 |
-
):
|
919 |
-
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
920 |
-
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
921 |
-
# Details: https://github.com/pytorch/pytorch/issues/110213
|
922 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
923 |
-
|
924 |
-
return causal_mask
|
925 |
-
|
926 |
|
927 |
############################## LM Heads #################################
|
928 |
|
@@ -2288,118 +2027,379 @@ class MixtralSparseMoeBlock(nn.Module):
|
|
2288 |
# we cast back to the input dtype
|
2289 |
routing_weights = routing_weights.to(hidden_states.dtype)
|
2290 |
|
2291 |
-
final_hidden_states = torch.zeros(
|
2292 |
-
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2293 |
)
|
2294 |
|
2295 |
-
|
2296 |
-
# this will be used to easily index which expert is going to be sollicitated
|
2297 |
-
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
2298 |
|
2299 |
-
#
|
2300 |
-
|
2301 |
-
|
2302 |
-
|
2303 |
|
2304 |
-
|
2305 |
-
|
2306 |
-
|
2307 |
-
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
2308 |
-
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
2309 |
|
2310 |
-
|
2311 |
-
|
2312 |
-
|
2313 |
-
|
2314 |
-
|
2315 |
-
|
2316 |
-
|
2317 |
-
|
2318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2319 |
|
2320 |
-
|
2321 |
-
self.mlp = MistralMLP(config)
|
2322 |
-
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
2323 |
-
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
2324 |
-
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
2325 |
|
2326 |
-
|
2327 |
-
|
2328 |
-
hidden_states: torch.Tensor,
|
2329 |
-
attention_mask: Optional[torch.Tensor] = None,
|
2330 |
-
position_ids: Optional[torch.LongTensor] = None,
|
2331 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
2332 |
-
output_attentions: Optional[bool] = False,
|
2333 |
-
output_router_logits: Optional[bool] = False,
|
2334 |
-
use_cache: Optional[bool] = False,
|
2335 |
-
cache_position: Optional[torch.LongTensor] = None,
|
2336 |
-
**kwargs,
|
2337 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
2338 |
-
"""
|
2339 |
-
Args:
|
2340 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
2341 |
-
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
2342 |
-
`(batch, sequence_length)` where padding elements are indicated by 0.
|
2343 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
2344 |
-
output_attentions (`bool`, *optional*):
|
2345 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
2346 |
-
returned tensors for more detail.
|
2347 |
-
output_router_logits (`bool`, *optional*):
|
2348 |
-
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
2349 |
-
should not be returned during inference.
|
2350 |
-
use_cache (`bool`, *optional*):
|
2351 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
2352 |
-
(see `past_key_values`).
|
2353 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
2354 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
2355 |
-
kwargs (`dict`, *optional*):
|
2356 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
2357 |
-
into the model
|
2358 |
-
"""
|
2359 |
|
2360 |
-
|
|
|
2361 |
|
2362 |
-
hidden_states = self.
|
2363 |
|
2364 |
-
#
|
2365 |
-
|
2366 |
-
hidden_states
|
2367 |
-
|
2368 |
-
|
2369 |
-
|
2370 |
-
|
2371 |
-
|
2372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
2373 |
)
|
2374 |
-
hidden_states = residual + hidden_states
|
2375 |
|
2376 |
-
|
2377 |
-
|
2378 |
-
|
2379 |
-
|
2380 |
-
|
|
|
|
|
|
|
|
|
2381 |
|
2382 |
-
#
|
2383 |
-
|
2384 |
-
|
2385 |
-
hidden_states = self.mlp(hidden_states)
|
2386 |
-
hidden_states = residual + hidden_states
|
2387 |
|
2388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2389 |
|
2390 |
-
|
2391 |
-
|
|
|
2392 |
|
2393 |
-
|
2394 |
-
|
|
|
|
|
2395 |
|
2396 |
-
if
|
2397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2398 |
|
2399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2400 |
|
2401 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2402 |
|
|
|
2403 |
|
2404 |
############# Causal LM #################
|
2405 |
class MistralForCausalLM(MistralPreTrainedModel):
|
@@ -3421,40 +3421,10 @@ class MistralForCausalLM(MistralPreTrainedModel):
|
|
3421 |
else:
|
3422 |
cur_talk_loss = talk_loss_list[talk_idx]
|
3423 |
log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
|
3424 |
-
if self.training:
|
3425 |
-
self.training_steps += 1
|
3426 |
-
try:
|
3427 |
-
# if self.training_steps % (self.gradient_accumulation_steps * 256) == 0:
|
3428 |
-
if self.wandb_enabled:
|
3429 |
-
if self.training_steps % (self.n_tokens_print) == 0 or not self.training:# and "0" in str(loss.device):
|
3430 |
-
if not self.training:
|
3431 |
-
new_log_dict = {}
|
3432 |
-
for key in list(log_dict.keys()):
|
3433 |
-
new_log_dict["eval_" + key] = log_dict[key]
|
3434 |
-
log_dict = new_log_dict
|
3435 |
-
log_dict["training_steps"] = self.training_steps
|
3436 |
-
log_dict["batch_size"] = batch_size
|
3437 |
-
log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
|
3438 |
-
if self.n_ahead > 1:
|
3439 |
-
log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps
|
3440 |
-
else: # There's no overhead for talk tokens if there's no thinking
|
3441 |
-
log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
|
3442 |
-
# remove all nans
|
3443 |
-
for key in list(log_dict.keys()):
|
3444 |
-
if log_dict[key] != log_dict[key]:
|
3445 |
-
del log_dict[key]
|
3446 |
-
if self.training:
|
3447 |
-
wandb.log(log_dict)
|
3448 |
-
if self.training:
|
3449 |
-
self.log_dict = defaultdict(int)
|
3450 |
-
else:
|
3451 |
-
self.eval_log_dict = defaultdict(int)
|
3452 |
-
except Exception as e:
|
3453 |
-
pass
|
3454 |
|
3455 |
-
|
3456 |
-
|
3457 |
-
|
3458 |
return CausalLMOutputWithPast(
|
3459 |
loss=loss if loss is not None else None,
|
3460 |
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
|
|
|
662 |
module.weight.data[module.padding_idx].zero_()
|
663 |
|
664 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
665 |
|
666 |
############################## LM Heads #################################
|
667 |
|
|
|
2027 |
# we cast back to the input dtype
|
2028 |
routing_weights = routing_weights.to(hidden_states.dtype)
|
2029 |
|
2030 |
+
final_hidden_states = torch.zeros(
|
2031 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
2032 |
+
)
|
2033 |
+
|
2034 |
+
# One hot encode the selected experts to create an expert mask
|
2035 |
+
# this will be used to easily index which expert is going to be sollicitated
|
2036 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
2037 |
+
|
2038 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
2039 |
+
for expert_idx in range(self.num_experts):
|
2040 |
+
expert_layer = self.experts[expert_idx]
|
2041 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
2042 |
+
|
2043 |
+
# Index the correct hidden states and compute the expert hidden state for
|
2044 |
+
# the current expert. We need to make sure to multiply the output hidden
|
2045 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
2046 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
2047 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
2048 |
+
|
2049 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
2050 |
+
# the `top_x` tensor here.
|
2051 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
2052 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
2053 |
+
return final_hidden_states, router_logits
|
2054 |
+
class MixtralDecoderLayer(nn.Module):
|
2055 |
+
def __init__(self, config: MixtralConfig, layer_idx: int):
|
2056 |
+
super().__init__()
|
2057 |
+
self.hidden_size = config.hidden_size
|
2058 |
+
|
2059 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
2060 |
+
self.mlp = MistralMLP(config)
|
2061 |
+
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
2062 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
2063 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
2064 |
+
|
2065 |
+
def forward(
|
2066 |
+
self,
|
2067 |
+
hidden_states: torch.Tensor,
|
2068 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2069 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2070 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
2071 |
+
output_attentions: Optional[bool] = False,
|
2072 |
+
output_router_logits: Optional[bool] = False,
|
2073 |
+
use_cache: Optional[bool] = False,
|
2074 |
+
cache_position: Optional[torch.LongTensor] = None,
|
2075 |
+
**kwargs,
|
2076 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
2077 |
+
"""
|
2078 |
+
Args:
|
2079 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
2080 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
2081 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
2082 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
2083 |
+
output_attentions (`bool`, *optional*):
|
2084 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
2085 |
+
returned tensors for more detail.
|
2086 |
+
output_router_logits (`bool`, *optional*):
|
2087 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
2088 |
+
should not be returned during inference.
|
2089 |
+
use_cache (`bool`, *optional*):
|
2090 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
2091 |
+
(see `past_key_values`).
|
2092 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
2093 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
2094 |
+
kwargs (`dict`, *optional*):
|
2095 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
2096 |
+
into the model
|
2097 |
+
"""
|
2098 |
+
|
2099 |
+
residual = hidden_states
|
2100 |
+
|
2101 |
+
hidden_states = self.input_layernorm(hidden_states)
|
2102 |
+
|
2103 |
+
# Self Attention
|
2104 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
2105 |
+
hidden_states=hidden_states,
|
2106 |
+
attention_mask=attention_mask,
|
2107 |
+
position_ids=position_ids,
|
2108 |
+
past_key_value=past_key_value,
|
2109 |
+
output_attentions=output_attentions,
|
2110 |
+
use_cache=use_cache,
|
2111 |
+
cache_position=cache_position,
|
2112 |
+
)
|
2113 |
+
hidden_states = residual + hidden_states
|
2114 |
+
|
2115 |
+
# Fully Connected
|
2116 |
+
residual = hidden_states
|
2117 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
2118 |
+
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
2119 |
+
hidden_states = residual + hidden_states
|
2120 |
+
|
2121 |
+
# Fully Connected
|
2122 |
+
residual = hidden_states
|
2123 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
2124 |
+
hidden_states = self.mlp(hidden_states)
|
2125 |
+
hidden_states = residual + hidden_states
|
2126 |
+
|
2127 |
+
outputs = (hidden_states,)
|
2128 |
+
|
2129 |
+
if output_attentions:
|
2130 |
+
outputs += (self_attn_weights,)
|
2131 |
+
|
2132 |
+
if use_cache:
|
2133 |
+
outputs += (present_key_value,)
|
2134 |
+
|
2135 |
+
if output_router_logits:
|
2136 |
+
outputs += (router_logits,)
|
2137 |
+
|
2138 |
+
return outputs
|
2139 |
+
|
2140 |
+
################################ closed COMPONENTS ################################
|
2141 |
+
|
2142 |
+
|
2143 |
+
@add_start_docstrings(
|
2144 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
2145 |
+
MISTRAL_START_DOCSTRING,
|
2146 |
+
)
|
2147 |
+
class MistralModel(MistralPreTrainedModel):
|
2148 |
+
"""
|
2149 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
2150 |
+
|
2151 |
+
Args:
|
2152 |
+
config: MistralConfig
|
2153 |
+
"""
|
2154 |
+
|
2155 |
+
def __init__(self, config: MistralConfig):
|
2156 |
+
super().__init__(config)
|
2157 |
+
self.padding_idx = config.pad_token_id
|
2158 |
+
self.vocab_size = config.vocab_size
|
2159 |
+
|
2160 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
2161 |
+
self.layers = nn.ModuleList(
|
2162 |
+
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
2163 |
+
)
|
2164 |
+
self._attn_implementation = config._attn_implementation
|
2165 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
2166 |
+
|
2167 |
+
self.gradient_checkpointing = False
|
2168 |
+
# Initialize weights and apply final processing
|
2169 |
+
self.post_init()
|
2170 |
+
|
2171 |
+
def get_input_embeddings(self):
|
2172 |
+
return self.embed_tokens
|
2173 |
+
|
2174 |
+
def set_input_embeddings(self, value):
|
2175 |
+
self.embed_tokens = value
|
2176 |
+
|
2177 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
2178 |
+
def forward(
|
2179 |
+
self,
|
2180 |
+
input_ids: torch.LongTensor = None,
|
2181 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2182 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2183 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
2184 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2185 |
+
use_cache: Optional[bool] = None,
|
2186 |
+
output_attentions: Optional[bool] = None,
|
2187 |
+
output_hidden_states: Optional[bool] = None,
|
2188 |
+
return_dict: Optional[bool] = None,
|
2189 |
+
cache_position: Optional[torch.LongTensor] = None,
|
2190 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
2191 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2192 |
+
output_hidden_states = (
|
2193 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
2194 |
+
)
|
2195 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
2196 |
+
|
2197 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2198 |
+
|
2199 |
+
# retrieve input_ids and inputs_embeds
|
2200 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
2201 |
+
raise ValueError(
|
2202 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
2203 |
+
)
|
2204 |
+
|
2205 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
2206 |
+
logger.warning_once(
|
2207 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
2208 |
+
)
|
2209 |
+
use_cache = False
|
2210 |
+
|
2211 |
+
if inputs_embeds is None:
|
2212 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
2213 |
+
|
2214 |
+
return_legacy_cache = False
|
2215 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
2216 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
2217 |
+
return_legacy_cache = True
|
2218 |
+
logger.warning_once(
|
2219 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
2220 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
2221 |
+
)
|
2222 |
+
|
2223 |
+
if cache_position is None:
|
2224 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
2225 |
+
cache_position = torch.arange(
|
2226 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
2227 |
+
)
|
2228 |
+
|
2229 |
+
if position_ids is None:
|
2230 |
+
position_ids = cache_position.unsqueeze(0)
|
2231 |
+
|
2232 |
+
causal_mask = self._update_causal_mask(
|
2233 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions
|
2234 |
)
|
2235 |
|
2236 |
+
hidden_states = inputs_embeds
|
|
|
|
|
2237 |
|
2238 |
+
# decoder layers
|
2239 |
+
all_hidden_states = () if output_hidden_states else None
|
2240 |
+
all_self_attns = () if output_attentions else None
|
2241 |
+
next_decoder_cache = None
|
2242 |
|
2243 |
+
for decoder_layer in self.layers:
|
2244 |
+
if output_hidden_states:
|
2245 |
+
all_hidden_states += (hidden_states,)
|
|
|
|
|
2246 |
|
2247 |
+
if self.gradient_checkpointing and self.training:
|
2248 |
+
layer_outputs = self._gradient_checkpointing_func(
|
2249 |
+
decoder_layer.__call__,
|
2250 |
+
hidden_states,
|
2251 |
+
causal_mask,
|
2252 |
+
position_ids,
|
2253 |
+
past_key_values,
|
2254 |
+
output_attentions,
|
2255 |
+
use_cache,
|
2256 |
+
cache_position,
|
2257 |
+
)
|
2258 |
+
else:
|
2259 |
+
layer_outputs = decoder_layer(
|
2260 |
+
hidden_states,
|
2261 |
+
attention_mask=causal_mask,
|
2262 |
+
position_ids=position_ids,
|
2263 |
+
past_key_value=past_key_values,
|
2264 |
+
output_attentions=output_attentions,
|
2265 |
+
use_cache=use_cache,
|
2266 |
+
cache_position=cache_position,
|
2267 |
+
)
|
2268 |
|
2269 |
+
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
|
2270 |
|
2271 |
+
if use_cache:
|
2272 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2273 |
|
2274 |
+
if output_attentions:
|
2275 |
+
all_self_attns += (layer_outputs[1],)
|
2276 |
|
2277 |
+
hidden_states = self.norm(hidden_states)
|
2278 |
|
2279 |
+
# add hidden states from the last decoder layer
|
2280 |
+
if output_hidden_states:
|
2281 |
+
all_hidden_states += (hidden_states,)
|
2282 |
+
|
2283 |
+
next_cache = next_decoder_cache if use_cache else None
|
2284 |
+
if return_legacy_cache:
|
2285 |
+
next_cache = next_cache.to_legacy_cache()
|
2286 |
+
|
2287 |
+
if not return_dict:
|
2288 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
2289 |
+
return BaseModelOutputWithPast(
|
2290 |
+
last_hidden_state=hidden_states,
|
2291 |
+
past_key_values=next_cache,
|
2292 |
+
hidden_states=all_hidden_states,
|
2293 |
+
attentions=all_self_attns,
|
2294 |
)
|
|
|
2295 |
|
2296 |
+
def _update_causal_mask(
|
2297 |
+
self,
|
2298 |
+
attention_mask: torch.Tensor,
|
2299 |
+
input_tensor: torch.Tensor,
|
2300 |
+
cache_position: torch.Tensor,
|
2301 |
+
past_key_values: Cache,
|
2302 |
+
use_cache: bool,
|
2303 |
+
output_attentions: bool,
|
2304 |
+
):
|
2305 |
|
2306 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
2307 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
2308 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
|
|
|
|
2309 |
|
2310 |
+
if self._attn_implementation == "flash_attention_2":
|
2311 |
+
if attention_mask is not None and use_cache:
|
2312 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
2313 |
+
if is_padding_right:
|
2314 |
+
raise ValueError(
|
2315 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
2316 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
2317 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
2318 |
+
)
|
2319 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
2320 |
+
return attention_mask
|
2321 |
+
return None
|
2322 |
|
2323 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
2324 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
2325 |
+
# to infer the attention mask.
|
2326 |
|
2327 |
+
# cache_position must be valid here no matter which cache we use
|
2328 |
+
past_seen_tokens = cache_position[0] if past_key_values is not None else 0
|
2329 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
2330 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
2331 |
|
2332 |
+
if (
|
2333 |
+
self.config._attn_implementation == "sdpa"
|
2334 |
+
and not (using_static_cache or using_sliding_window_cache)
|
2335 |
+
and not output_attentions
|
2336 |
+
):
|
2337 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
2338 |
+
attention_mask,
|
2339 |
+
inputs_embeds=input_tensor,
|
2340 |
+
past_key_values_length=past_seen_tokens,
|
2341 |
+
sliding_window=self.config.sliding_window,
|
2342 |
+
is_training=self.training,
|
2343 |
+
):
|
2344 |
+
return None
|
2345 |
|
2346 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
2347 |
+
min_dtype = torch.finfo(dtype).min
|
2348 |
+
sequence_length = input_tensor.shape[1]
|
2349 |
+
# SlidingWindowCache
|
2350 |
+
if using_sliding_window_cache:
|
2351 |
+
target_length = max(sequence_length, self.config.sliding_window)
|
2352 |
+
# StaticCache
|
2353 |
+
elif using_static_cache:
|
2354 |
+
target_length = past_key_values.get_max_length()
|
2355 |
+
# DynamicCache or no cache
|
2356 |
+
else:
|
2357 |
+
target_length = (
|
2358 |
+
attention_mask.shape[-1]
|
2359 |
+
if isinstance(attention_mask, torch.Tensor)
|
2360 |
+
else past_seen_tokens + sequence_length + 1
|
2361 |
+
)
|
2362 |
|
2363 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
2364 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
2365 |
+
if attention_mask.max() != 0:
|
2366 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
2367 |
+
causal_mask = attention_mask
|
2368 |
+
else:
|
2369 |
+
causal_mask = torch.full(
|
2370 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
2371 |
+
)
|
2372 |
+
exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
2373 |
+
if self.config.sliding_window is not None:
|
2374 |
+
if not using_sliding_window_cache or sequence_length > self.config.sliding_window:
|
2375 |
+
exclude_mask.bitwise_or_(
|
2376 |
+
torch.arange(target_length, device=device)
|
2377 |
+
<= (cache_position.reshape(-1, 1) - self.config.sliding_window)
|
2378 |
+
)
|
2379 |
+
causal_mask *= exclude_mask
|
2380 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
2381 |
+
if attention_mask is not None:
|
2382 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
2383 |
+
if attention_mask.dim() == 2:
|
2384 |
+
mask_length = attention_mask.shape[-1]
|
2385 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
2386 |
+
padding_mask = padding_mask == 0
|
2387 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
2388 |
+
padding_mask, min_dtype
|
2389 |
+
)
|
2390 |
+
|
2391 |
+
if (
|
2392 |
+
self.config._attn_implementation == "sdpa"
|
2393 |
+
and attention_mask is not None
|
2394 |
+
and attention_mask.device.type == "cuda"
|
2395 |
+
and not output_attentions
|
2396 |
+
):
|
2397 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
2398 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
2399 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
2400 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
2401 |
|
2402 |
+
return causal_mask
|
2403 |
|
2404 |
############# Causal LM #################
|
2405 |
class MistralForCausalLM(MistralPreTrainedModel):
|
|
|
3421 |
else:
|
3422 |
cur_talk_loss = talk_loss_list[talk_idx]
|
3423 |
log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3424 |
|
3425 |
+
|
3426 |
+
self.n_ahead_talk = n_ahead_talk_to_restore
|
3427 |
+
self.n_passes = n_passes_to_restore
|
3428 |
return CausalLMOutputWithPast(
|
3429 |
loss=loss if loss is not None else None,
|
3430 |
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
|