--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-file-classifier-v1 results: [] --- # bert-file-classifier-v1 This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5040 - Accuracy: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 73 | 2.9232 | 0.2379 | | No log | 2.0 | 146 | 2.3616 | 0.4103 | | No log | 3.0 | 219 | 1.9274 | 0.5724 | | No log | 4.0 | 292 | 1.6500 | 0.6793 | | No log | 5.0 | 365 | 1.3585 | 0.7172 | | No log | 6.0 | 438 | 1.1529 | 0.7448 | | 1.8175 | 7.0 | 511 | 0.9884 | 0.7690 | | 1.8175 | 8.0 | 584 | 0.8728 | 0.7966 | | 1.8175 | 9.0 | 657 | 0.7990 | 0.7966 | | 1.8175 | 10.0 | 730 | 0.7191 | 0.8379 | | 1.8175 | 11.0 | 803 | 0.7060 | 0.8069 | | 1.8175 | 12.0 | 876 | 0.6388 | 0.8207 | | 1.8175 | 13.0 | 949 | 0.6215 | 0.8241 | | 0.4201 | 14.0 | 1022 | 0.6104 | 0.8310 | | 0.4201 | 15.0 | 1095 | 0.5726 | 0.8414 | | 0.4201 | 16.0 | 1168 | 0.6273 | 0.8138 | | 0.4201 | 17.0 | 1241 | 0.4878 | 0.8655 | | 0.4201 | 18.0 | 1314 | 0.5040 | 0.8586 | | 0.4201 | 19.0 | 1387 | 0.4873 | 0.8655 | | 0.4201 | 20.0 | 1460 | 0.5066 | 0.8655 | | 0.1063 | 21.0 | 1533 | 0.5139 | 0.8690 | | 0.1063 | 22.0 | 1606 | 0.5060 | 0.8655 | | 0.1063 | 23.0 | 1679 | 0.4933 | 0.8690 | | 0.1063 | 24.0 | 1752 | 0.5140 | 0.8690 | | 0.1063 | 25.0 | 1825 | 0.5040 | 0.8621 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1