File size: 1,425 Bytes
c67bd9d
b66e218
 
 
 
 
 
 
 
 
c67bd9d
 
b66e218
 
c67bd9d
b66e218
c67bd9d
b66e218
 
 
 
 
 
 
 
 
 
c67bd9d
b66e218
c67bd9d
b66e218
c67bd9d
b66e218
c67bd9d
b66e218
c67bd9d
b66e218
c67bd9d
b66e218
c67bd9d
b66e218
c67bd9d
b66e218
c67bd9d
b66e218
 
 
 
 
 
 
 
 
 
 
c67bd9d
b66e218
c67bd9d
b66e218
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
model-index:
- name: adapter_head_l2_l23
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# adapter_head_l2_l23

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.5190
- eval_wer: 0.9259
- eval_cer: 0.2445
- eval_runtime: 222.1952
- eval_samples_per_second: 19.267
- eval_steps_per_second: 2.412
- epoch: 69.2308
- step: 22500

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1