File size: 2,601 Bytes
8604c12
 
 
 
 
 
 
 
 
8617886
8604c12
 
2e74206
 
 
8617886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8604c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model:
- Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
- Nitral-AI/Infinitely-Laydiculous-7B
library_name: transformers
tags:
- mergekit
- merge
- roleplay
inference: false
---

This repository hosts GGUF-IQ-Imatrix quants for [Nitral-AI/Infinitely-Laydiculous-7b-longtext](https://huggingface.co/Nitral-AI/Infinitely-Laydiculous-7b-longtext).

Thanks for the merge!

**What does "Imatrix" mean?**

It stands for **Importance Matrix**, a technique used to improve the quality of quantized models.
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process.
The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance, especially when the calibration data is diverse.
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)

For imatrix data generation, kalomaze's `groups_merged.txt` with added roleplay chats was used, you can find it [here](https://huggingface.co/Lewdiculous/Datura_7B-GGUF-Imatrix/blob/main/imatrix-with-rp-format-data.txt). This was just to add a bit more diversity to the data.

**Steps:**

```
Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)
```
*Using the latest llama.cpp at the time.*

```python
    quantization_options = [
        "Q4_K_M", "Q4_K_S", "IQ4_XS", "Q5_K_M", "Q5_K_S",
        "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XXS"
    ]
```

## Original model information:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/ThhZa1NaOwj6V2iHL_rsn.png)

This model was merged using the SLERP merge method.

### Models Merged

The following models were included in the merge:
* [Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context](https://huggingface.co/Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context)
* [Nitral-AI/Infinitely-Laydiculous-7B](https://huggingface.co/Nitral-AI/Infinitely-Laydiculous-7B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
        layer_range: [0, 32]
      - model: Nitral-AI/Infinitely-Laydiculous-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```