File size: 6,182 Bytes
90992fa
 
 
 
 
 
 
 
 
 
 
 
d376359
 
 
 
 
 
 
 
 
 
90992fa
 
1f7ad0b
 
 
 
 
 
 
 
 
 
90992fa
 
 
 
 
 
781029b
90992fa
 
 
887cc42
90992fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
base_model:
- SanjiWatsuki/Kunoichi-DPO-v2-7B
library_name: transformers
tags:
- mistral
- quantized
- text-generation-inference
pipeline_tag: text-generation
inference: false
license: cc-by-nc-4.0
---

> [!TIP]
> **Support:** <br>
> My upload speeds have been cooked and unstable lately. <br>
> Realistically I'd need to move to get a better provider. <br>
> If you **want** and you are able to... <br>
> [**You can support my various endeavors here (Ko-fi).**](https://ko-fi.com/Lewdiculous) <br>
> I apologize for disrupting your experience.


# **GGUF-Imatrix quantizations for [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B/).**

# What does "Imatrix" mean?

It stands for **Importance Matrix**, a technique used to improve the quality of quantized models.

The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process. The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance.

One of the benefits of using an Imatrix is that it can lead to better model performance, especially when the calibration data is diverse.

More information: [[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)

*If you want any specific quantization to be added, feel free to ask.*

All credits belong to the [creator](https://huggingface.co/SanjiWatsuki/).

`Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)`

<!-- The new **IQ3_S** quant-option has shown to be better than the old Q3_K_S, so I added that instead of the later. Only supported in `koboldcpp-1.59.1` or higher. -->

Using [llama.cpp](https://github.com/ggerganov/llama.cpp/)-[b2277](https://github.com/ggerganov/llama.cpp/releases/tag/b2277).

For --imatrix data, `imatrix-Kunoichi-DPO-v2-7B-F16.dat` was used.

# Waifu card:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/EVYWQn0osm0eP9xIhWbH4.png)


# Original model information:

| Model                | MT Bench | EQ Bench | MMLU   | Logic Test |
|----------------------|----------|----------|---------|-------------|
| GPT-4-Turbo         | 9.32     | -        | -       | -           |
| GPT-4               | 8.99     | 62.52    | 86.4    | 0.86        |
| **Kunoichi-DPO-v2-7B** | **8.51**     | **42.18**    | **64.94**| **0.58**        |
| Mixtral-8x7B-Instruct| 8.30     | 44.81    | 70.6    | 0.75        |
| **Kunoichi-DPO-7B** | **8.29**     | **41.60**    | **64.83**    | **0.59**        |
| **Kunoichi-7B**     | **8.14**     | **44.32**    | **64.9**    | **0.58**            |
| Starling-7B         | 8.09     | -        | 63.9    | 0.51        |
| Claude-2            | 8.06     | 52.14    | 78.5    | -           |
| Silicon-Maid-7B     | 7.96     | 40.44    | 64.7    | 0.54           |
| Loyal-Macaroni-Maid-7B | 7.95     | 38.66    | 64.9   | 0.57        |
| GPT-3.5-Turbo       | 7.94     | 50.28    | 70      | 0.57        |
| Claude-1            | 7.9       | -        | 77      | -           |
| Openchat-3.5        | 7.81     | 37.08    | 64.3    | 0.39        |
| Dolphin-2.6-DPO     | 7.74     | 42.88    | 61.9    | 0.53        |
| Zephyr-7B-beta      | 7.34     | 38.71    | 61.4    | 0.30        |
| Llama-2-70b-chat-hf | 6.86     | 51.56    | 63      | -           |
| Neural-chat-7b-v3-1 | 6.84     | 43.61    | 62.4    | 0.30        |

| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| **Kunoichi-DPO-7B**|**58.4**|  45.08 |  74|     66.99|   47.52|
| **Kunoichi-DPO-v2-7B**|**58.31**|  44.85|  75.05|     65.69|   47.65|
| [Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B)|57.54|  44.99|  74.86|     63.72|   46.58|
| [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)| 56.85 | 44.74 | 75.6 | 59.89 | 47.17 |
| [Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) | 56.45|  44.74|  74.26|      61.5|   45.32|
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)  | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
| [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) | 51.34 | 42.67 | 72.92 | 47.27 | 42.51 |
| [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) | 51.16 | 42.06 | 72.72 | 47.33 | 42.53 |
| [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 50.99 | 37.33 | 71.83 | 55.1 | 39.7 |

| Model                       | AlpacaEval2 | Length |
| --------------------------- | ----------- | ------ |
| GPT-4                       | 23.58%      | 1365   |
| GPT-4 0314                  | 22.07%      | 1371   |
| Mistral Medium              | 21.86%      | 1500   |
| Mixtral 8x7B v0.1           | 18.26%      | 1465   |
| **Kunoichi-DPO-v2**         | **17.19%**  | 1785   |
| Claude 2                    | 17.19%      | 1069   |
| Claude                      | 16.99%      | 1082   |
| Gemini Pro                  | 16.85%      | 1315   |
| GPT-4 0613                  | 15.76%      | 1140   |
| Claude 2.1                  | 15.73%      | 1096   |
| Mistral 7B v0.2             | 14.72%      | 1676   |
| GPT 3.5 Turbo 0613          | 14.13%      | 1328   |
| LLaMA2 Chat 70B             | 13.87%      | 1790   |
| LMCocktail-10.7B-v1         | 13.15%      | 1203   |
| WizardLM 13B V1.1           | 11.23%      | 1525   |
| Zephyr 7B Beta              | 10.99%      | 1444   |
| OpenHermes-2.5-Mistral (7B) | 10.34%      | 1107   |
| GPT 3.5 Turbo 0301          | 9.62%       | 827    |
| **Kunoichi-7B**             | **9.38%**   | 1492   |
| GPT 3.5 Turbo 1106          | 9.18%       | 796    |
| GPT-3.5                     | 8.56%       | 1018   |
| Phi-2 DPO                   | 7.76%       | 1687   |
| LLaMA2 Chat 13B             | 7.70%       | 1513   |