Li commited on
Commit
9151649
1 Parent(s): 22579c9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [roberta-base](https://huggingface.co/roberta-base) fine-tuned on the [SQuAD2](https://rajpurkar.github.io/SQuAD-explorer) dataset for 2 epochs.
2
+
3
+ The fine-tuning process was performed on a single NVIDIA Tesla T4 GPU (15GB). The hyperparameters are:
4
+
5
+ ```
6
+ max_seq_length=512
7
+ per_device_train_batch_size=8
8
+ gradient_accumulation_steps=4
9
+ total train batch size (w. parallel, distributed & accumulation) = 32
10
+ learning_rate=3e-5
11
+ ```
12
+
13
+ ## Evaluation results
14
+
15
+ ```
16
+ "epoch": 2.0,
17
+ "eval_HasAns_exact": 77.81713900134953,
18
+ "eval_HasAns_f1": 83.925283241562,
19
+ "eval_HasAns_total": 5928,
20
+ "eval_NoAns_exact": 82.84272497897393,
21
+ "eval_NoAns_f1": 82.84272497897393,
22
+ "eval_NoAns_total": 5945,
23
+ "eval_best_exact": 80.33352985766024,
24
+ "eval_best_exact_thresh": 0.0,
25
+ "eval_best_f1": 83.38322909593005,
26
+ "eval_best_f1_thresh": 0.0,
27
+ "eval_exact": 80.33352985766024,
28
+ "eval_f1": 83.38322909593009,
29
+ "eval_samples": 11955,
30
+ "eval_total": 11873,
31
+ "train_loss": 0.8760372974557542,
32
+ "train_runtime": 33641.9821,
33
+ "train_samples": 130551,
34
+ "train_samples_per_second": 7.761,
35
+ "train_steps_per_second": 0.242
36
+ ```
37
+
38
+ ## More information
39
+
40
+ Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
41
+
42
+ SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. (https://rajpurkar.github.io/SQuAD-explorer/)