File size: 82,090 Bytes
2668634 d9d68f5 2668634 d9d68f5 2668634 d9d68f5 2668634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 |
# coding=utf-8
# Copyright 2024 FLMR Authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch FLMR model for Knowledge-intensive Visual Question Answering."""
import copy
import os
import pathlib
import string
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch import Tensor, nn
from torch.utils.cpp_extension import load
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers.models.bert.modeling_bert import BertModel
from transformers.models.clip import CLIPVisionModel
from .configuration_flmr import FLMRConfig, FLMRTextConfig, FLMRVisionConfig
from .tokenization_flmr import FLMRQueryEncoderTokenizer, FLMRContextEncoderTokenizer
from .tokenization_flmr_fast import FLMRQueryEncoderTokenizerFast, FLMRContextEncoderTokenizerFast
from .flmr_utils import (
colbert_score,
colbert_score_reduce,
get_rank,
get_world_size,
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FLMRConfig"
_CHECKPOINT_FOR_DOC = "LinWeizheDragon/PreFLMR_ViT-L"
FLMR_PRETRAINED_MODEL_ARCHIVE_LIST = [
"LinWeizheDragon/PreFLMR_ViT-L",
"LinWeizheDragon/FLMR",
# See all FLMR models at https://huggingface.co/models?filter=flmr
]
##########
# Outputs
##########
@dataclass
class FLMRContextEncoderOutput(ModelOutput):
"""
Class for outputs of the `doc()` function of [`FLMRModelForRetrieval`].
Args:
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
The FLMR encoder outputs the *pooler_output* that corresponds to the embedding of the first token of the context representation.
This output can be used to embed questions for nearest neighbors queries with query embeddings.
late_interaction_output (`torch.FloatTensor` of shape `(batch_size, context_embedding_length, embeddings_size)`):
The FLMR encoder outputs the *late_interaction_output* that corresponds to the question representation. The embeddings of all tokens are included for late interaction retrieval.
This output is to be used to embed contexts for late-interaction retrieval with query embeddings.
context_mask (`torch.FloatTensor` of shape `(batch_size, context_embedding_length)`):
The FLMR encoder outputs the *context_mask* that corresponds to the mask of the context representation.
text_encoder_attentions (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the attention weights of the text encoder's layers. Each element is a
tensor of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
text_encoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the hidden states of the text encoder at each layer plus the initial embedding
outputs. Each tensor has a shape of `(batch_size, sequence_length, hidden_size)`.
vision_encoder_attentions (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the attention weights of the vision encoder's layers. Each element is a
tensor of shape `(batch_size, num_heads, vision_sequence_length, vision_sequence_length)`.
vision_encoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the hidden states of the vision encoder at each layer plus the initial embedding
outputs. Each tensor has a shape of `(batch_size, vision_sequence_length, hidden_size)`.
transformer_mapping_network_attentions (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the attention weights of the transformer mapping network's layers. Each element
is a tensor of shape `(batch_size, num_heads, mapping_sequence_length, mapping_sequence_length)`.
transformer_mapping_network_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the hidden states of the transformer mapping network at each layer plus the
initial embedding outputs. Each tensor has a shape of `(batch_size, mapping_sequence_length, hidden_size)`.
"""
pooler_output: torch.FloatTensor
late_interaction_output: torch.FloatTensor = None
context_mask: torch.FloatTensor = None
text_encoder_attentions: Optional[Tuple[Tensor]] = None
text_encoder_hidden_states: Optional[Tuple[Tensor]] = None
vision_encoder_attentions: Optional[Tuple[Tensor]] = None
vision_encoder_hidden_states: Optional[Tuple[Tensor]] = None
transformer_mapping_network_attentions: Optional[Tuple[Tensor]] = None
transformer_mapping_network_hidden_states: Optional[Tuple[Tensor]] = None
@dataclass
class FLMRQueryEncoderOutput(ModelOutput):
"""
Class for outputs of the `query()` function of [`FLMRModelForRetrieval.query()`].
Args:
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
The FLMR encoder outputs the *pooler_output* that corresponds to the embedding of the first token of the query representation.
This output can be used to embed questions for nearest neighbors queries with context embeddings.
late_interaction_output (`torch.FloatTensor` of shape `(batch_size, query_embedding_length, embeddings_size)`):
The FLMR encoder outputs the *late_interaction_output* that corresponds to the question representation. The embeddings of all tokens are included for late interaction retrieval.
This output is to be used to embed questions for late-interaction retrieval with context embeddings.
text_encoder_attentions (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the attention weights of the text encoder's layers. Each element is a
tensor of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
text_encoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the hidden states of the text encoder at each layer plus the initial embedding
outputs. Each tensor has a shape of `(batch_size, sequence_length, hidden_size)`.
vision_encoder_attentions (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the attention weights of the vision encoder's layers. Each element is a
tensor of shape `(batch_size, num_heads, vision_sequence_length, vision_sequence_length)`.
vision_encoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the hidden states of the vision encoder at each layer plus the initial embedding
outputs. Each tensor has a shape of `(batch_size, vision_sequence_length, hidden_size)`.
transformer_mapping_network_attentions (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the attention weights of the transformer mapping network's layers. Each element
is a tensor of shape `(batch_size, num_heads, mapping_sequence_length, mapping_sequence_length)`.
transformer_mapping_network_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of elements containing the hidden states of the transformer mapping network at each layer plus the
initial embedding outputs. Each tensor has a shape of `(batch_size, mapping_sequence_length, hidden_size)`.
"""
pooler_output: torch.FloatTensor
late_interaction_output: torch.FloatTensor = None
text_encoder_attentions: Optional[Tuple[Tensor]] = None
text_encoder_hidden_states: Optional[Tuple[Tensor]] = None
vision_encoder_attentions: Optional[Tuple[Tensor]] = None
vision_encoder_hidden_states: Optional[Tuple[Tensor]] = None
transformer_mapping_network_attentions: Optional[Tuple[Tensor]] = None
transformer_mapping_network_hidden_states: Optional[Tuple[Tensor]] = None
@dataclass
class FLMRModelForRetrievalOutput(ModelOutput):
"""
Class for outputs of [`FLMRModelForRetrieval.query()`].
Args:
loss (`torch.FloatTensor`):
contrastive loss of the input queries and positive and negative examples. This output is to be used in model training.
scores (`torch.FloatTensor` of shape `(batch_size, num_positive_examples + num_negative_examples)`):
The FLMR model outputs the *scores* that corresponds to the late-interaction scores of the input query and context. Each query is associated with `num_positive_examples` positive examples and `num_negative_examples` negative examples, and the scores are the late-interaction scores of the query and these examples.
in_batch_negative_loss (`torch.FloatTensor` of shape `(batch_size, query_embedding_length, embeddings_size)`):
The FLMR model outputs the *in_batch_negative_loss* which computes contrastive loss that includes in-batch negatives. For each positive example, all other examples in the batch except itself are considered negative examples in computing the contrastive loss. This improves ultimate performance in practice. This output is to be used in model training.
query_late_interaction_output (`torch.FloatTensor` of shape `(batch_size, query_embedding_length, embeddings_size)`):
The FLMR model outputs the *query_late_interaction_output* that corresponds to the late-interaction representations of the input query.
context_late_interaction_output (`torch.FloatTensor` of shape `(batch_size, context_embedding_length, embeddings_size)`):
The FLMR model outputs the *context_late_interaction_output* that corresponds to the late-interaction representations of the input context.
query_attentions (`Tuple[Tuple[Tensor]]`, *optional*):
Tuple of elements containing the attention weights of the query's layers. There are three sub-tuples in this tuple, corresponding to the attentions of the text encoder, vision encoder, and transformer mapping network. Each element in the sub-tuple is a tensor of shape `(batch_size, num_heads, sequence_length, sequence_length)`, with `sequence_length` being the sequence length in the corresponding encoder.
query_hidden_states (`Tuple[Tuple[Tensor]]`, *optional*):
Tuple of elements containing the hidden states of the query's layers. There are three sub-tuples in this tuple, corresponding to the hidden states of the text encoder, vision encoder, and transformer mapping network. Each element in the sub-tuple is a tensor of shape `(batch_size, sequence_length, hidden_size)`, with `sequence_length` being the sequence length in the corresponding encoder.
context_attentions (`Tuple[Tuple[Tensor]]`, *optional*):
Tuple of elements containing the attention weights of the context's layers. There are three sub-tuples in this tuple, corresponding to the attentions of the text encoder, vision encoder, and transformer mapping network. Each element in the sub-tuple is a tensor of shape `(batch_size, num_heads, sequence_length, sequence_length)`, with `sequence_length` being the sequence length in the corresponding encoder.
context_hidden_states (`Tuple[Tuple[Tensor]]`, *optional*):
Tuple of elements containing the hidden states of the context's layers. There are three sub-tuples in this tuple, corresponding to the hidden states of the text encoder, vision encoder, and transformer mapping network. Each element in the sub-tuple is a tensor of shape `(batch_size, sequence_length, hidden_size)`, with `sequence_length` being the sequence length in the corresponding encoder.
"""
loss: torch.FloatTensor
scores: torch.FloatTensor = None
in_batch_negative_loss: torch.FloatTensor = None
query_late_interaction_output: torch.FloatTensor = None
context_late_interaction_output: torch.FloatTensor = None
query_attentions: Optional[Tuple[Tuple[Tensor]]] = None
query_hidden_states: Optional[Tuple[Tuple[Tensor]]] = None
context_attentions: Optional[Tuple[Tuple[Tensor]]] = None
context_hidden_states: Optional[Tuple[Tuple[Tensor]]] = None
class FLMRPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
##################
# PreTrainedModel
##################
class FLMRPretrainedModelForRetrieval(FLMRPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FLMRConfig
load_tf_weights = None
base_model_prefix = "flmr"
###############
# Actual Models
###############
FLMR_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FLMRConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
query_tokenizer ([`FLMRQueryEncoderTokenizer`], *optional*): The tokenizer used for tokenizing the query.
The query tokenizer can be initialized with `FLMRQueryEncoderTokenizer.from_pretrained(pretrained_model_name_or_path)`.
context_tokenizer ([`FLMRContextEncoderTokenizer`], *optional*): The tokenizer used for tokenizing the context.
The context tokenizer can be initialized with `FLMRContextEncoderTokenizer.from_pretrained(pretrained_model_name_or_path)`.
"""
FLMR_MODEL_INPUTS_DOCSTRING = r"""
Args:
query_input_ids (`torch.LongTensor` of shape `(batch_size, query_length)`):
Indices of input query tokens in the vocabulary. To match pretraining, FLMR input sequence should be
formatted with [CLS] and Q marker tokens as follows:
[CLS] [unused0] using the provided image, obtain documents that address the subsequent question : what is the capital of france? [SEP] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] ...
FLMR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
query_attention_mask (`torch.FloatTensor` of shape `(batch_size, query_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
query_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Pixel values. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
query_image_features (`torch.FloatTensor` of shape `(batch_size, vision_encoder_hidden_size)`, *optional*):
Image features are required when `query_pixel_values` is not provided. In this case, vision encoder outputs are pre-extracted to speed up training and inference by skipping the vision encoder forward pass and the extract image features are directly given to the FLMR model. Image features can be obtained
using [`CLIPVisionModel`]. See [`CLIPVisionModel.__call__`] for details.
context_input_ids (`torch.LongTensor` of shape `(batch_size * (1 + num_negative_examples), context_length)`):
Indices of input context tokens in the vocabulary. To match pretraining, FLMR input sequence should be
formatted with [CLS] and D marker tokens as follows:
[CLS] [unused1] paris is the capital of france. [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] ...
FLMR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
The input batch size of this tensor is `batch_size * (1 + num_negative_examples)`. Check the following argument `num_negative_examples` for details.
context_attention_mask (`torch.FloatTensor` of shape `(batch_size * (1 + num_negative_examples), context_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
The input batch size of this tensor is `batch_size * (1 + num_negative_examples)`. Check the following argument `num_negative_examples` for details.
context_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Pixel values. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
context_image_features (`torch.FloatTensor` of shape `(batch_size, vision_encoder_hidden_size)`, *optional*):
Image features are required when `context_pixel_values` is not provided. In this case, vision encoder outputs are pre-extracted to speed up training and inference by skipping the vision encoder forward pass and the extract image features are directly given to the FLMR model. Image features can be obtained
using [`CLIPVisionModel`]. See [`CLIPVisionModel.__call__`] for details.
use_in_batch_negatives (`bool`, *optional*):
Whether or not to use in-batch negatives. If `True`, the contrastive loss includes in-batch negatives. For each positive example, all other examples in the batch except itself are considered negative examples in computing the contrastive loss. This improves ultimate performance in practice. This input is to be used in model training.
in_batch_negatives_from_all_gpus (`bool`, *optional*):
Whether or not to use in-batch negatives from all GPUs. If `True`, the contrastive loss includes in-batch negatives from all GPUs. This input is to be used in model training.
num_negative_examples (`int`, *optional*):
The number of negative examples in the batch. For example, if `num_negative_examples` is 4, the batch size of `context_input_ids` and `context_attention_mask` is `batch_size * 5`.
query_concat_output_from_vision_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the vision encoder to the final query late-interaction representations. If `True`, the output from the vision encoder is concatenated to the query representations. When using a pretrained model, this will be read from the model configuration. It should be set to `True` for FLMR and PreFLMR -style models.
query_concat_output_from_text_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the text encoder to the final query late-interaction representations. If `True`, the output from the text encoder is concatenated to the query representations. When using a pretrained model, this will be read from the model configuration. It should be set to `True` for FLMR and PreFLMR -style models.
This argument can be set to `False` when performing mapping network pretraining as in FLMR and PreFLMR, in which case the output from the text encoder is not concatenated to the final query representations.
context_concat_output_from_vision_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the vision encoder to the final context late-interaction representations. If `True`, the output from the vision encoder is concatenated to the context representations. When using a pretrained model, this will be read from the model configuration. It should be set to `False` for FLMR and PreFLMR -style models since the context vision encoder is not used.
This can be set to `True` to additionally encode the context images with the vision encoder when context images are provided.
context_concat_output_from_text_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the text encoder to the final context late-interaction representations. If `True`, the output from the text encoder is concatenated to the context representations. When using a pretrained model, this will be read from the model configuration. It should be set to `True` for FLMR and PreFLMR -style models.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `*_attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `*_hidden_states` under returned tensors for more detail.
"""
FLMR_MODEL_QUERY_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, query_length)`):
Indices of input query tokens in the vocabulary. To match pretraining, FLMR input sequence should be
formatted with [CLS] and Q marker tokens as follows:
[CLS] [unused0] using the provided image, obtain documents that address the subsequent question : what is the capital of france? [SEP] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] ...
FLMR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, query_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Pixel values. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
image_features (`torch.FloatTensor` of shape `(batch_size, vision_encoder_hidden_size)`, *optional*):
Image features are required when `pixel_values` is not provided. In this case, vision encoder outputs are pre-extracted to speed up training and inference by skipping the vision encoder forward pass and the extract image features are directly given to the FLMR model. Image features can be obtained
using [`CLIPVisionModel`]. See [`CLIPVisionModel.__call__`] for details.
concat_output_from_vision_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the vision encoder to the final query late-interaction representations. If `True`, the output from the vision encoder is concatenated to the query representations. When using a pretrained model, this will be read from the model configuration. It should be set to `True` for FLMR and PreFLMR -style models.
concat_output_from_text_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the text encoder to the final query late-interaction representations. If `True`, the output from the text encoder is concatenated to the query representations. When using a pretrained model, this will be read from the model configuration. It should be set to `True` for FLMR and PreFLMR -style models.
This argument can be set to `False` when performing mapping network pretraining as in FLMR and PreFLMR, in which case the output from the text encoder is not concatenated to the final query representations.
"""
FLMR_MODEL_CONTEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * (1 + num_negative_examples), context_length)`):
Indices of input context tokens in the vocabulary. To match pretraining, FLMR input sequence should be
formatted with [CLS] and D marker tokens as follows:
[CLS] [unused1] paris is the capital of france. [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] ...
FLMR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
The input batch size of this tensor is `batch_size * (1 + num_negative_examples)`. Check the following argument `num_negative_examples` for details.
attention_mask (`torch.FloatTensor` of shape `(batch_size * (1 + num_negative_examples), context_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
The input batch size of this tensor is `batch_size * (1 + num_negative_examples)`. Check the following argument `num_negative_examples` for details.
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
Pixel values. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
image_features (`torch.FloatTensor` of shape `(batch_size, vision_encoder_hidden_size)`, *optional*):
Image features are required when `pixel_values` is not provided. In this case, vision encoder outputs are pre-extracted to speed up training and inference by skipping the vision encoder forward pass and the extract image features are directly given to the FLMR model. Image features can be obtained
using [`CLIPVisionModel`]. See [`CLIPVisionModel
.__call__`] for details.
concat_output_from_vision_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the vision encoder to the final context late-interaction representations. If `True`, the output from the vision encoder is concatenated to the context representations. When using a pretrained model, this will be read from the model configuration. It should be set to `False` for FLMR and PreFLMR -style models since the context vision encoder is not used.
This can be set to `True` to additionally encode the context images with the vision encoder when context images are provided.
concat_output_from_text_encoder (`bool`, *optional*):
Whether or not to concatenate the output from the text encoder to the final context late-interaction representations. If `True`, the output from the text encoder is concatenated to the context representations. When using a pretrained model, this will be read from the model configuration. It should be set to `True` for FLMR and PreFLMR -style models.
keep_dims (`bool`, *optional*):
Whether or not to keep the dimensions of the output. If `True`, the output is returned with the same dimensions as the input. If `False`, the output is returned with the batch size of the input and the context length. This input is to be used in model training.
return_mask (`bool`, *optional*):
Whether or not to return the mask of the context representation. If `True`, the mask of the context representation is returned. This input is to be used in model training.
"""
FLMR_TEXT_ENCODERS_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FLMRTextConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
# Modified from transformers.models.dpr.modeling_dpr with DPR -> FLMR
FLMR_TEXT_ENCODERS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. To match pretraining, FLMR input sequence should be
formatted with [CLS] and [SEP] tokens as follows:
(a) For sequence pairs (for a pair title+text for example):
```
tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
```
(b) For single sequences (for a question for example):
```
tokens: [CLS] the dog is hairy . [SEP]
token_type_ids: 0 0 0 0 0 0 0
```
FLMR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
FLMR_VISION_ENCODERS_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FLMRVisionConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
# Modified from transformers.models.clip.modeling_clip with CLIP -> FLMR
FLMR_VISION_ENCODERS_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FLMRMultiLayerPerceptron(nn.Module):
"""
A simple multi-layer perceptron with an activation function. This can be used as the mapping network in the FLMR model.
"""
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def __init__(self, sizes, bias=True, act=nn.Tanh):
super(FLMRMultiLayerPerceptron, self).__init__()
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
@add_start_docstrings(
"The bare FLMR model that can be used to generate late-interaction embeddings for both multi-modal queries and documents. ",
FLMR_START_DOCSTRING,
)
class FLMRModelForRetrieval(FLMRPretrainedModelForRetrieval):
_keys_to_ignore_on_load_unexpected = [r"cls"]
main_input_name = "query_input_ids"
_tied_weights_keys = [] # Added dynamically at initialization depending on the architecture
def __init__(self, config: FLMRConfig, query_tokenizer=None, context_tokenizer=None):
super().__init__(config)
self.config = config
self.vision_model_version = config.vision_model_version
self.context_text_encoder = FLMRTextModel(config.text_config)
self.context_text_encoder_linear = nn.Linear(config.text_config.hidden_size, config.dim, bias=False)
self.query_tokenizer = query_tokenizer
self.context_tokenizer = context_tokenizer
if self.query_tokenizer is None:
logger.warning(
"query_tokenizer is not provided. A tokenizer is initialized from `bert-base-uncased`. Please pass in an FLMRQueryEncoderTokenizer instance if you need to extend the vocabulary beyond the existing ones in the bert tokenizer."
)
from transformers import FLMRQueryEncoderTokenizer
# initialize a FLMRQueryEncoderTokenizer
self.query_tokenizer = FLMRQueryEncoderTokenizer.from_pretrained("bert-base-uncased")
if self.context_tokenizer is None:
logger.warning(
"context_tokenizer is not provided. A tokenizer is initialized from `bert-base-uncased`. Please pass in an FLMRContextEncoderTokenizer instance if you need to extend the vocabulary beyond the existing ones in the bert tokenizer."
)
from transformers import FLMRContextEncoderTokenizer
# initialize a FLMRContextEncoderTokenizer
self.context_tokenizer = FLMRContextEncoderTokenizer.from_pretrained("bert-base-uncased")
self.mapping_network_prefix_length = self.config.mapping_network_prefix_length
self.vision_encoder_embedding_size = self.config.vision_config.hidden_size
self.text_encoder_embedding_size = self.config.text_config.hidden_size
self.late_interaction_embedding_size = self.config.dim
if self.config.use_vision_encoder:
self.context_vision_projection = FLMRMultiLayerPerceptron(
(
self.vision_encoder_embedding_size,
(self.late_interaction_embedding_size * self.mapping_network_prefix_length) // 2,
self.late_interaction_embedding_size * self.mapping_network_prefix_length,
)
)
if self.config.use_vision_encoder:
self.context_vision_encoder = FLMRVisionModel(config.vision_config)
if self.config.use_transformer_mapping_network:
# This is a PreFLMR style model
transformer_mapping_config_base = self.config.transformer_mapping_config_base
try:
from transformers import BertConfig
from transformers.models.bert.modeling_bert import BertEncoder
except Exception as e:
raise ImportError(f"Failed to import BertConfig and BertEncoder from transformers. {e}")
transformer_mapping_config = BertConfig.from_pretrained(transformer_mapping_config_base)
assert (
self.config.text_config.hidden_size == transformer_mapping_config.hidden_size
), f"hidden_size {self.config.text_config.hidden_size} != transformer_mapping_config.hidden_size {transformer_mapping_config.hidden_size}. To use cross attention, the dimensions must match."
# shallow transformer
transformer_mapping_config.num_hidden_layers = self.config.transformer_mapping_num_hidden_layers
# add cross attention
transformer_mapping_config.is_decoder = True
transformer_mapping_config.add_cross_attention = True
# The linear layer from vision encoder to transformer input
self.transformer_mapping_input_linear = nn.Linear(
self.vision_encoder_embedding_size, transformer_mapping_config.hidden_size
)
# The transformer encoder
self.transformer_mapping_network = BertEncoder(transformer_mapping_config)
# The linear layer from transformer output to FLMR dim
self.transformer_mapping_output_linear = nn.Linear(
transformer_mapping_config.hidden_size, self.late_interaction_embedding_size
)
if self.config.separate_query_and_context_text_encoder:
self.query_text_encoder = copy.deepcopy(self.context_text_encoder)
self.query_text_encoder_linear = copy.deepcopy(self.context_text_encoder_linear)
else:
self.query_text_encoder = self.context_text_encoder
self.query_text_encoder_linear = self.context_text_encoder_linear
self._tied_weights_keys += ["context_text_encoder", "context_text_encoder_linear"]
if self.config.use_vision_encoder:
if self.config.separate_query_and_context_vision_encoder:
self.query_vision_encoder = copy.deepcopy(self.context_vision_encoder)
self.query_vision_projection = copy.deepcopy(self.context_vision_projection)
else:
self.query_vision_encoder = self.context_vision_encoder
self.query_vision_projection = self.context_vision_projection
self._tied_weights_keys += ["context_vision_encoder", "context_vision_projection"]
if self.config.load_cpu_extension:
try:
FLMRModelForRetrieval.try_load_torch_extensions()
except Exception as e:
raise(f"Unable to load `segmented_maxsim.cpp`. hf-hub does not download this file automatically. Please download it manually from `https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/blob/main/segmented_maxsim.cpp` and put it under the same folder as the model file.\n {e}")
if self.config.mask_punctuation:
self.skiplist = {
w: True
for symbol in string.punctuation
for w in [symbol, self.context_tokenizer.encode(symbol, add_special_tokens=False)[0]]
}
if self.config.mask_instruction_token is not None:
self.mask_instruction = True
# obtain the token id of the instruction token
self.instruction_token_id = self.query_tokenizer.encode(
self.config.mask_instruction_token, add_special_tokens=False
)[0]
else:
self.mask_instruction = False
self.loss_fn = torch.nn.CrossEntropyLoss()
# Initialize weights and apply final processing
self.post_init()
@property
def use_gpu(self):
return self.device.type == "cuda"
@classmethod
def from_pretrained(self, name_or_path, **kwargs):
obj = super().from_pretrained(name_or_path, **kwargs)
return obj
@classmethod
def try_load_torch_extensions(cls):
if hasattr(cls, "loaded_extensions"):
return
logger.info(
"Loading segmented_maxsim_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)..."
)
segmented_maxsim_cpp = load(
name="segmented_maxsim_cpp",
sources=[
os.path.join(pathlib.Path(__file__).parent.resolve(), "segmented_maxsim.cpp"),
],
extra_cflags=["-O3"],
verbose=os.getenv("COLBERT_LOAD_TORCH_EXTENSION_VERBOSE", "False") == "True",
)
cls.segmented_maxsim = segmented_maxsim_cpp.segmented_maxsim_cpp
cls.loaded_extensions = True
def query_mask(self, input_ids, skiplist):
if not self.mask_instruction:
return self.mask(input_ids, skiplist)
# find the position of end of instruction in input_ids
# mask the tokens before the position
sep_id = self.instruction_token_id
sep_positions = torch.argmax((input_ids == sep_id).int(), dim=1).tolist()
# if any of the positions is lower than 1, set to 1
for i, x in enumerate(sep_positions):
if x < 1:
sep_positions[i] = 1
logger.error(f"can not find the separator in the input_ids: {input_ids[i].tolist()}")
mask = [
[
(x not in skiplist) and (x != 0) and (index > sep_positions[seq_index] or index < 2)
for index, x in enumerate(d)
]
for seq_index, d in enumerate(input_ids.cpu().tolist())
]
return mask
@add_start_docstrings_to_model_forward(FLMR_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FLMRModelForRetrievalOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
query_input_ids: Optional[torch.Tensor] = None,
query_attention_mask: Optional[torch.Tensor] = None,
query_pixel_values: Optional[torch.Tensor] = None,
query_image_features: Optional[torch.Tensor] = None,
context_input_ids: Optional[torch.Tensor] = None,
context_attention_mask: Optional[torch.Tensor] = None,
context_pixel_values: Optional[torch.Tensor] = None,
context_image_features: Optional[torch.Tensor] = None,
use_in_batch_negatives: bool = True,
in_batch_negatives_from_all_gpus: bool = False,
num_negative_examples: int = 1,
query_concat_output_from_vision_encoder: Optional[bool] = None,
query_concat_output_from_text_encoder: Optional[bool] = None,
context_concat_output_from_vision_encoder: Optional[bool] = None,
context_concat_output_from_text_encoder: Optional[bool] = None,
return_dict: bool = None,
output_attentions: bool = None,
output_hidden_states: bool = None,
) -> Union[FLMRModelForRetrievalOutput, Tuple[Tensor, ...]]:
r"""
Return:
Examples:
```python
>>> import torch
>>> from transformers import FLMRQueryEncoderTokenizer, FLMRContextEncoderTokenizer, FLMRModelForRetrieval, AutoImageProcessor
>>> checkpoint_path = "LinWeizheDragon/PreFLMR_ViT-L"
>>> image_processor_name = "openai/clip-vit-large-patch14"
>>> query_tokenizer = FLMRQueryEncoderTokenizer.from_pretrained(checkpoint_path, subfolder="query_tokenizer")
>>> context_tokenizer = FLMRContextEncoderTokenizer.from_pretrained(checkpoint_path, subfolder="context_tokenizer")
>>> model = FLMRModelForRetrieval.from_pretrained(checkpoint_path,
query_tokenizer=query_tokenizer,
context_tokenizer=context_tokenizer,
)
>>> image_processor = AutoImageProcessor.from_pretrained(image_processor_name)
>>> Q_encoding = query_tokenizer(["Using the provided image, obtain documents that address the subsequent question: What is the capital of France?", "Extract documents linked to the question provided in conjunction with the image: What is the capital of China?"])
>>> D_encoding = context_tokenizer(["Paris is the capital of France.", "Beijing is the capital of China.",
"Paris is the capital of France.", "Beijing is the capital of China."])
>>> Q_pixel_values = torch.zeros(2, 3, 224, 224)
>>> inputs = dict(
query_input_ids=Q_encoding['input_ids'],
query_attention_mask=Q_encoding['attention_mask'],
query_pixel_values=Q_pixel_values,
context_input_ids=D_encoding['input_ids'],
context_attention_mask=D_encoding['attention_mask'],
use_in_batch_negatives=True,
)
>>> model.forward(**inputs)
FLMRModelForRetrievalOutput(loss=tensor(4.5000, device='cuda:0', dtype=torch.float16,
grad_fn=<NllLossBackward0>), scores=tensor([[44.2188, 40.6562],
[39.4375, 48.4062]], device='cuda:0', dtype=torch.float16,
grad_fn=<ViewBackward0>), in_batch_negative_loss=tensor(5.1994, device='cuda:0', grad_fn=<NllLossBackward0>), query_late_interaction_output=tensor(...), context_late_interaction_output=tensor(...)
```
"""
if query_concat_output_from_vision_encoder is None:
query_concat_output_from_vision_encoder = self.config.query_concat_output_from_vision_encoder
if query_concat_output_from_text_encoder is None:
query_concat_output_from_text_encoder = self.config.query_concat_output_from_text_encoder
if context_concat_output_from_vision_encoder is None:
context_concat_output_from_vision_encoder = self.config.context_concat_output_from_vision_encoder
if context_concat_output_from_text_encoder is None:
context_concat_output_from_text_encoder = self.config.context_concat_output_from_text_encoder
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
query_outputs = self.query(
input_ids=query_input_ids,
attention_mask=query_attention_mask,
pixel_values=query_pixel_values,
image_features=query_image_features,
concat_output_from_vision_encoder=query_concat_output_from_vision_encoder,
concat_output_from_text_encoder=query_concat_output_from_text_encoder,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
Q = query_outputs.late_interaction_output
context_outputs = self.doc(
input_ids=context_input_ids,
attention_mask=context_attention_mask,
pixel_values=context_pixel_values,
image_features=context_image_features,
concat_output_from_vision_encoder=context_concat_output_from_vision_encoder,
concat_output_from_text_encoder=context_concat_output_from_text_encoder,
keep_dims=True,
return_mask=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
D, D_mask = context_outputs.late_interaction_output, context_outputs.context_mask
# Gather tensors from other GPUs
if in_batch_negatives_from_all_gpus:
Q, D, D_mask = self.gather_tensors_from_other_gpus(Q, D, D_mask)
# Repeat each query encoding for every corresponding document.
Q_duplicated = Q.repeat_interleave(num_negative_examples + 1, dim=0).contiguous()
scores = self.score(Q_duplicated, D, D_mask)
# Use contrastive learning
batch_size = query_input_ids.shape[0]
scores = scores.view(-1, num_negative_examples + 1)
labels = torch.zeros(batch_size, dtype=torch.long, device=self.device)
loss = self.loss_fn(scores, labels)
if use_in_batch_negatives:
ib_loss = self.compute_ib_loss_new(Q, D, D_mask)
else:
ib_loss = None
if output_attentions:
query_attentions = (
query_outputs.text_encoder_attentions if query_outputs.text_encoder_attentions is not None else None,
query_outputs.vision_encoder_attentions
if query_outputs.vision_encoder_attentions is not None
else None,
query_outputs.transformer_mapping_network_attentions
if query_outputs.transformer_mapping_network_attentions is not None
else None,
)
context_attentions = (
context_outputs.text_encoder_attentions
if context_outputs.text_encoder_attentions is not None
else None,
context_outputs.vision_encoder_attentions
if context_outputs.vision_encoder_attentions is not None
else None,
context_outputs.transformer_mapping_network_attentions
if context_outputs.transformer_mapping_network_attentions is not None
else None,
)
else:
query_attentions = None
context_attentions = None
if output_hidden_states:
query_hidden_states = (
query_outputs.text_encoder_hidden_states
if query_outputs.text_encoder_hidden_states is not None
else None,
query_outputs.vision_encoder_hidden_states
if query_outputs.vision_encoder_hidden_states is not None
else None,
query_outputs.transformer_mapping_network_hidden_states
if query_outputs.transformer_mapping_network_hidden_states is not None
else None,
)
context_hidden_states = (
context_outputs.text_encoder_hidden_states
if context_outputs.text_encoder_hidden_states is not None
else None,
context_outputs.vision_encoder_hidden_states
if context_outputs.vision_encoder_hidden_states is not None
else None,
context_outputs.transformer_mapping_network_hidden_states
if context_outputs.transformer_mapping_network_hidden_states is not None
else None,
)
else:
query_hidden_states = None
context_hidden_states = None
if not return_dict:
if output_attentions and output_hidden_states:
return (
loss,
scores,
ib_loss,
query_outputs.late_interaction_output,
context_outputs.late_interaction_output,
query_attentions,
query_hidden_states,
context_attentions,
context_hidden_states,
)
elif output_attentions:
return (
loss,
scores,
ib_loss,
query_outputs.late_interaction_output,
context_outputs.late_interaction_output,
query_attentions,
context_attentions,
)
elif output_hidden_states:
return (
loss,
scores,
ib_loss,
query_outputs.late_interaction_output,
context_outputs.late_interaction_output,
query_hidden_states,
context_hidden_states,
)
else:
return (
loss,
scores,
ib_loss,
query_outputs.late_interaction_output,
context_outputs.late_interaction_output,
)
return FLMRModelForRetrievalOutput(
loss=loss,
scores=scores,
in_batch_negative_loss=ib_loss,
query_late_interaction_output=query_outputs.late_interaction_output,
context_late_interaction_output=context_outputs.late_interaction_output,
query_attentions=query_attentions if output_attentions else None,
query_hidden_states=query_hidden_states if output_hidden_states else None,
context_attentions=context_attentions if output_attentions else None,
context_hidden_states=context_hidden_states if output_hidden_states else None,
)
def compute_ib_loss_new(self, Q: torch.Tensor, D: torch.Tensor, D_mask: torch.Tensor) -> torch.Tensor:
# Q: batch_size x q_len x dim
# D: batch_size*n_docs x i_len x dim
# D_mask: batch_size*n_docs x i_len x dim
# 1 x batch_size*n_docs x i_len x dim matmul batch_size x 1 x q_len x dim
# = batch_size x batch_size*n_docs x i_len x q_len
scores = (D.float().unsqueeze(0) @ Q.float().permute(0, 2, 1).unsqueeze(1)).flatten(
0, 1
) # query-major unsqueeze
scores = colbert_score_reduce(scores, D_mask.repeat(Q.size(0), 1, 1))
in_batch_scores = scores.reshape(Q.size(0), -1)
batch_size = Q.shape[0]
batch_size_with_pos_and_neg = D.shape[0]
num_pos_and_neg = batch_size_with_pos_and_neg // batch_size
# batch_size x dim matmul dim x (num_pos+num_neg)*batch_size
# --> batch_size x (num_pos+num_neg)*batch_size
in_batch_labels = torch.zeros(batch_size, batch_size_with_pos_and_neg).to(scores.device)
step = num_pos_and_neg
for i in range(batch_size):
in_batch_labels[i, step * i] = 1
# print('in_batch_labels', in_batch_labels)
in_batch_labels = torch.argmax(in_batch_labels, dim=1)
# print('in_batch_labels', in_batch_labels)
loss = self.loss_fn(in_batch_scores, in_batch_labels)
return loss
def gather_tensors_from_other_gpus(self, query_embeddings, item_embeddings, item_mask):
# print("get rank", get_rank())
# print("get world size", get_world_size())
# Gather embeddings from other GPUs
n_nodes = get_world_size()
if n_nodes == 1:
return query_embeddings, item_embeddings, item_mask
# Create placeholder to hold embeddings passed from other ranks
global_query_embeddings_placeholder = [
torch.zeros(*query_embeddings.shape, dtype=query_embeddings.dtype).to(query_embeddings.device)
for _ in range(n_nodes)
]
global_item_embeddings_placeholder = [
torch.zeros(*item_embeddings.shape, dtype=item_embeddings.dtype).to(item_embeddings.device)
for _ in range(n_nodes)
]
global_item_mask_placeholder = [
torch.zeros(*item_mask.shape, dtype=item_mask.dtype).to(item_mask.device) for _ in range(n_nodes)
]
dist.all_gather(global_query_embeddings_placeholder, query_embeddings.detach())
dist.all_gather(global_item_embeddings_placeholder, item_embeddings.detach())
dist.all_gather(global_item_mask_placeholder, item_mask.detach())
global_query_embeddings = []
global_item_embeddings = []
global_item_mask = []
# print(f"rank {get_rank()} global_query_embeddings", global_query_embeddings)
# print(f"rank {get_rank()} global_item_embeddings", global_item_embeddings)
# input()
current_rank = get_rank()
for rank_index, remote_q_embeddings in enumerate(global_query_embeddings_placeholder):
# We append the embeddings from other GPUs if this embedding does not require gradients
if rank_index != current_rank:
global_query_embeddings.append(remote_q_embeddings)
else:
global_query_embeddings.append(query_embeddings)
for rank_index, remote_item_embeddings in enumerate(global_item_embeddings_placeholder):
# We append the embeddings from other GPUs if this embedding does not require gradients
if rank_index != current_rank:
global_item_embeddings.append(remote_item_embeddings)
else:
global_item_embeddings.append(item_embeddings)
for rank_index, remote_item_mask in enumerate(global_item_mask_placeholder):
# We append the embeddings from other GPUs if this embedding does not require gradients
if rank_index != current_rank:
global_item_mask.append(remote_item_mask)
else:
global_item_mask.append(item_mask)
# Replace the previous variables with gathered tensors
query_embeddings = torch.cat(global_query_embeddings)
item_embeddings = torch.cat(global_item_embeddings)
item_mask = torch.cat(global_item_mask)
return query_embeddings, item_embeddings, item_mask
@add_start_docstrings_to_model_forward(FLMR_MODEL_QUERY_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FLMRQueryEncoderOutput, config_class=_CONFIG_FOR_DOC)
def query(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
pixel_values: Optional[torch.Tensor] = None,
image_features: Optional[torch.Tensor] = None,
concat_output_from_vision_encoder: Optional[bool] = None,
concat_output_from_text_encoder: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
):
r"""
Returns:
"""
if concat_output_from_vision_encoder is None:
concat_output_from_vision_encoder = self.config.query_concat_output_from_vision_encoder
if concat_output_from_text_encoder is None:
concat_output_from_text_encoder = self.config.query_concat_output_from_text_encoder
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
input_modality = []
if pixel_values is not None or image_features is not None:
input_modality.append("image")
if input_ids is not None and attention_mask is not None:
input_modality.append("text")
text_encoder_outputs = None
vision_encoder_outputs = None
transformer_mapping_outputs = None
if "image" in input_modality:
assert (
pixel_values is not None or image_features is not None
), "pixel_values or image_features must be provided if image modality is used"
assert (
pixel_values is None or image_features is None
), "pixel_values and image_features cannot be provided at the same time"
if "text" in input_modality:
assert (
input_ids is not None and attention_mask is not None
), "input_ids and attention_mask must be provided if text modality is used"
# Forward the text encoder
input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
text_encoder_outputs = self.query_text_encoder(input_ids, attention_mask=attention_mask)
text_encoder_hidden_states = text_encoder_outputs[0]
text_embeddings = self.query_text_encoder_linear(text_encoder_hidden_states)
mask = torch.tensor(self.query_mask(input_ids, skiplist=[]), device=self.device).unsqueeze(2).float()
text_embeddings = text_embeddings * mask
if "image" in input_modality:
if pixel_values is not None:
batch_size = pixel_values.shape[0]
# Forward the vision encoder
pixel_values = pixel_values.to(self.device)
if len(pixel_values.shape) == 5:
# Multiple ROIs are provided
# merge the first two dimensions
pixel_values = pixel_values.reshape(
-1, pixel_values.shape[2], pixel_values.shape[3], pixel_values.shape[4]
)
vision_encoder_outputs = self.query_vision_encoder(pixel_values, output_hidden_states=True)
vision_embeddings = vision_encoder_outputs.last_hidden_state[:, 0]
if image_features is not None:
batch_size = image_features.shape[0]
vision_embeddings = image_features.to(self.device)
# Forward the vision projection / mapping network
vision_embeddings = self.query_vision_projection(vision_embeddings)
vision_embeddings = vision_embeddings.view(batch_size, -1, self.late_interaction_embedding_size)
if self.config.use_transformer_mapping_network:
# select the second last layer
vision_second_last_layer_hidden_states = vision_encoder_outputs.hidden_states[-2][:, 1:]
# transformer_mapping
transformer_mapping_input_features = self.transformer_mapping_input_linear(
vision_second_last_layer_hidden_states
)
# Cross attention only attends to the first 32 tokens
encoder_mask = torch.ones_like(mask).to(mask.device, dtype=mask.dtype)
cross_attention_length = self.config.transformer_mapping_cross_attention_length
if text_encoder_hidden_states.shape[1] > cross_attention_length:
text_encoder_hidden_states = text_encoder_hidden_states[:, :cross_attention_length]
encoder_mask = encoder_mask[:, :cross_attention_length]
# Obtain cross attention mask
encoder_extended_attention_mask = self.invert_attention_mask(encoder_mask.squeeze(-1))
# Pass through the transformer mapping
transformer_mapping_outputs = self.transformer_mapping_network(
transformer_mapping_input_features,
encoder_hidden_states=text_encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
)
transformer_mapping_output_features = transformer_mapping_outputs.last_hidden_state
# Convert the dimension to FLMR dim
transformer_mapping_output_features = self.transformer_mapping_output_linear(
transformer_mapping_output_features
)
# Merge with the vision embeddings
vision_embeddings = torch.cat([vision_embeddings, transformer_mapping_output_features], dim=1)
if concat_output_from_vision_encoder and concat_output_from_text_encoder:
Q = torch.cat([text_embeddings, vision_embeddings], dim=1)
elif concat_output_from_vision_encoder:
Q = vision_embeddings
elif concat_output_from_text_encoder:
Q = text_embeddings
vision_encoder_attentions = (
vision_encoder_outputs.attentions
if vision_encoder_outputs is not None
and hasattr(vision_encoder_outputs, "attentions")
and output_attentions
else None
)
vision_encoder_hidden_states = (
vision_encoder_outputs.hidden_states
if vision_encoder_outputs is not None
and hasattr(vision_encoder_outputs, "hidden_states")
and output_hidden_states
else None
)
text_encoder_attentions = (
text_encoder_outputs.attentions
if text_encoder_outputs is not None and hasattr(text_encoder_outputs, "attentions") and output_attentions
else None
)
text_encoder_hidden_states = (
text_encoder_outputs.hidden_states
if text_encoder_outputs is not None
and hasattr(text_encoder_outputs, "hidden_states")
and output_hidden_states
else None
)
transformer_mapping_network_attentions = (
transformer_mapping_outputs.attentions
if transformer_mapping_outputs is not None
and hasattr(transformer_mapping_outputs, "attentions")
and output_attentions
else None
)
transformer_mapping_network_hidden_states = (
transformer_mapping_outputs.hidden_states
if transformer_mapping_outputs is not None
and hasattr(transformer_mapping_outputs, "hidden_states")
and output_hidden_states
else None
)
return FLMRQueryEncoderOutput(
pooler_output=Q[:, 0, :],
late_interaction_output=torch.nn.functional.normalize(Q, p=2, dim=2),
vision_encoder_attentions=vision_encoder_attentions,
vision_encoder_hidden_states=vision_encoder_hidden_states,
text_encoder_attentions=text_encoder_attentions,
text_encoder_hidden_states=text_encoder_hidden_states,
transformer_mapping_network_attentions=transformer_mapping_network_attentions,
transformer_mapping_network_hidden_states=transformer_mapping_network_hidden_states,
)
@add_start_docstrings_to_model_forward(FLMR_MODEL_CONTEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FLMRContextEncoderOutput, config_class=_CONFIG_FOR_DOC)
def doc(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
pixel_values: Optional[torch.Tensor] = None,
image_features: Optional[torch.Tensor] = None,
concat_output_from_vision_encoder: Optional[bool] = None,
concat_output_from_text_encoder: Optional[bool] = None,
keep_dims: Optional[bool] = True,
return_mask: Optional[bool] = True,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
):
r"""
Returns:
"""
assert keep_dims in [True, False]
if concat_output_from_vision_encoder is None:
concat_output_from_vision_encoder = self.config.context_concat_output_from_vision_encoder
if concat_output_from_text_encoder is None:
concat_output_from_text_encoder = self.config.context_concat_output_from_text_encoder
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
input_modality = []
if pixel_values is not None or image_features is not None:
input_modality.append("image")
if input_ids is not None and attention_mask is not None:
input_modality.append("text")
text_encoder_outputs = None
vision_encoder_outputs = None
if "image" in input_modality:
assert (
pixel_values is not None or image_features is not None
), "pixel_values or image_features must be provided if image modality is used"
assert (
pixel_values is None or image_features is None
), "pixel_values and image_features cannot be provided at the same time"
if "text" in input_modality:
assert (
input_ids is not None and attention_mask is not None
), "input_ids and attention_mask must be provided if text modality is used"
# Forward the text encoder
input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
text_encoder_outputs = self.context_text_encoder(input_ids, attention_mask=attention_mask)
text_embeddings = text_encoder_outputs[0]
text_embeddings = self.context_text_encoder_linear(text_embeddings)
mask = torch.tensor(self.mask(input_ids, skiplist=self.skiplist), device=self.device).unsqueeze(2).float()
text_embeddings = text_embeddings * mask
if "image" in input_modality:
if pixel_values is not None:
# Forward the vision encoder
pixel_values = pixel_values.to(self.device)
vision_encoder_outputs = self.context_vision_encoder(pixel_values)
vision_embeddings = vision_encoder_outputs.last_hidden_state[:, 0]
if image_features is not None:
vision_embeddings = image_features.to(self.device)
batch_size = vision_embeddings.shape[0]
# Forward the vision projection / mapping network
vision_embeddings = self.context_vision_projection(vision_embeddings)
vision_embeddings = vision_embeddings.view(
-1, self.mapping_network_prefix_length, self.late_interaction_embedding_size
)
image_mask = torch.ones(batch_size, vision_embeddings.shape[1], 1).to(self.device)
if concat_output_from_vision_encoder and concat_output_from_text_encoder:
# Note: vision embeddings must be in the front since the ColBERT engine only indexes embeddings up to number of 1's in the mask
# TODO: fix the engine to support masks with discontinuous 0 and 1.
D = torch.cat([vision_embeddings, text_embeddings], dim=1)
# concatenate the mask
mask = torch.cat([image_mask, mask], dim=1)
elif concat_output_from_vision_encoder:
D = vision_embeddings
mask = image_mask
elif concat_output_from_text_encoder:
D = text_embeddings
mask = mask
D = torch.nn.functional.normalize(D, p=2, dim=2)
if self.use_gpu:
D = D.half()
if keep_dims is False:
D, mask = D.cpu(), mask.bool().cpu().squeeze(-1)
D = [d[mask[idx]] for idx, d in enumerate(D)]
vision_encoder_attentions = (
vision_encoder_outputs.attentions
if vision_encoder_outputs is not None
and hasattr(vision_encoder_outputs, "attentions")
and output_attentions
else None
)
vision_encoder_hidden_states = (
vision_encoder_outputs.hidden_states
if vision_encoder_outputs is not None
and hasattr(vision_encoder_outputs, "hidden_states")
and output_hidden_states
else None
)
text_encoder_attentions = (
text_encoder_outputs.attentions
if text_encoder_outputs is not None and hasattr(text_encoder_outputs, "attentions") and output_attentions
else None
)
text_encoder_hidden_states = (
text_encoder_outputs.hidden_states
if text_encoder_outputs is not None
and hasattr(text_encoder_outputs, "hidden_states")
and output_hidden_states
else None
)
return FLMRContextEncoderOutput(
pooler_output=D[:, 0, :],
late_interaction_output=D,
context_mask=mask.bool() if return_mask else None,
vision_encoder_attentions=vision_encoder_attentions,
vision_encoder_hidden_states=vision_encoder_hidden_states,
text_encoder_attentions=text_encoder_attentions,
text_encoder_hidden_states=text_encoder_hidden_states,
)
def score(self, Q, D_padded, D_mask):
# assert self.colbert_config.similarity == 'cosine'
# if self.colbert_config.similarity == 'l2':
# assert self.colbert_config.interaction == 'colbert'
# return (-1.0 * ((Q.unsqueeze(2) - D_padded.unsqueeze(1))**2).sum(-1)).max(-1).values.sum(-1)
return colbert_score(Q, D_padded, D_mask, use_gpu=self.use_gpu)
def mask(self, input_ids, skiplist):
mask = [[(x not in skiplist) and (x != 0) for x in d] for d in input_ids.cpu().tolist()]
return mask
@add_start_docstrings(
"The bare FLMR text encoder that can be used to generate late-interaction embeddings for texts in queries and contexts. This model is based on a `BertModel`. It can be used like a `BertModel` model for encoding text.",
FLMR_TEXT_ENCODERS_START_DOCSTRING,
)
class FLMRTextModel(FLMRPreTrainedModel):
base_model_prefix = "bert_model"
config_class = FLMRTextConfig
def __init__(self, config: FLMRTextConfig, *args, **kwargs):
super().__init__(config)
self.bert_model = BertModel(config, add_pooling_layer=True)
if self.bert_model.config.hidden_size <= 0:
raise ValueError("Encoder hidden_size can't be zero")
self.projection_dim = config.projection_dim
if self.projection_dim > 0:
self.encode_proj = nn.Linear(self.bert_model.config.hidden_size, config.projection_dim)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLMR_TEXT_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=FLMRTextConfig)
def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = None,
output_hidden_states: bool = None,
return_dict: bool = None,
) -> Union[BaseModelOutputWithPooling, Tuple[Tensor, ...]]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
pooled_output = sequence_output[:, 0, :]
if self.projection_dim > 0:
pooled_output = self.encode_proj(pooled_output)
if not return_dict:
return (sequence_output, pooled_output) + outputs[2:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@property
def embeddings_size(self) -> int:
if self.projection_dim > 0:
return self.encode_proj.out_features
return self.bert_model.config.hidden_size
@add_start_docstrings(
"The bare FLMR vision encoder that can be used to generate late-interaction embeddings for images in queries and contexts. This model is based on a `CLIPVisionModel`. It can be used like a `CLIPVisionModel` model for encoding images.",
FLMR_VISION_ENCODERS_START_DOCSTRING,
)
class FLMRVisionModel(FLMRPreTrainedModel):
base_model_prefix = "vision_model"
config_class = FLMRVisionConfig
main_input_name = "pixel_values"
_no_split_modules = ["CLIPEncoderLayer"]
def __init__(self, config: FLMRVisionConfig):
super().__init__(config)
self.vision_model = CLIPVisionModel(config)
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(FLMR_VISION_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=FLMRVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FLMRVisionModel
>>> model = FLMRVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|