upload 25k step
Browse files- hitokomoru-25000-pruned.ckpt +3 -0
- prune-ckpt.py +58 -0
hitokomoru-25000-pruned.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a31a8007f35023b1e7439d7243cd1de080588eadb05b3c94b9d9bf4985d32aaf
|
3 |
+
size 3852134462
|
prune-ckpt.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import argparse
|
4 |
+
import glob
|
5 |
+
|
6 |
+
|
7 |
+
parser = argparse.ArgumentParser(description='Pruning')
|
8 |
+
parser.add_argument('--ckpt', type=str, default=None, help='path to model ckpt')
|
9 |
+
args = parser.parse_args()
|
10 |
+
ckpt = args.ckpt
|
11 |
+
|
12 |
+
def prune_it(p, keep_only_ema=False):
|
13 |
+
print(f"prunin' in path: {p}")
|
14 |
+
size_initial = os.path.getsize(p)
|
15 |
+
nsd = dict()
|
16 |
+
sd = torch.load(p, map_location="cpu")
|
17 |
+
print(sd.keys())
|
18 |
+
for k in sd.keys():
|
19 |
+
if k != "optimizer_states":
|
20 |
+
nsd[k] = sd[k]
|
21 |
+
else:
|
22 |
+
print(f"removing optimizer states for path {p}")
|
23 |
+
if "global_step" in sd:
|
24 |
+
print(f"This is global step {sd['global_step']}.")
|
25 |
+
if keep_only_ema:
|
26 |
+
sd = nsd["state_dict"].copy()
|
27 |
+
# infer ema keys
|
28 |
+
ema_keys = {k: "model_ema." + k[6:].replace(".", ".") for k in sd.keys() if k.startswith("model.")}
|
29 |
+
new_sd = dict()
|
30 |
+
|
31 |
+
for k in sd:
|
32 |
+
if k in ema_keys:
|
33 |
+
new_sd[k] = sd[ema_keys[k]].half()
|
34 |
+
elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]:
|
35 |
+
new_sd[k] = sd[k].half()
|
36 |
+
|
37 |
+
assert len(new_sd) == len(sd) - len(ema_keys)
|
38 |
+
nsd["state_dict"] = new_sd
|
39 |
+
else:
|
40 |
+
sd = nsd['state_dict'].copy()
|
41 |
+
new_sd = dict()
|
42 |
+
for k in sd:
|
43 |
+
new_sd[k] = sd[k].half()
|
44 |
+
nsd['state_dict'] = new_sd
|
45 |
+
|
46 |
+
fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" if not keep_only_ema else f"{os.path.splitext(p)[0]}-ema-pruned.ckpt"
|
47 |
+
print(f"saving pruned checkpoint at: {fn}")
|
48 |
+
torch.save(nsd, fn)
|
49 |
+
newsize = os.path.getsize(fn)
|
50 |
+
MSG = f"New ckpt size: {newsize*1e-9:.2f} GB. " + \
|
51 |
+
f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states"
|
52 |
+
if keep_only_ema:
|
53 |
+
MSG += " and non-EMA weights"
|
54 |
+
print(MSG)
|
55 |
+
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
prune_it(ckpt)
|