File size: 2,817 Bytes
d2216b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: git-base-pokemon
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# git-base-pokemon
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0407
- Wer Score: 2.1746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 7.3192 | 2.13 | 50 | 4.4908 | 21.3506 |
| 2.2486 | 4.26 | 100 | 0.3526 | 10.3803 |
| 0.1047 | 6.38 | 150 | 0.0321 | 0.3635 |
| 0.0222 | 8.51 | 200 | 0.0298 | 0.6636 |
| 0.0145 | 10.64 | 250 | 0.0286 | 2.1759 |
| 0.0081 | 12.77 | 300 | 0.0321 | 2.9690 |
| 0.004 | 14.89 | 350 | 0.0340 | 2.2962 |
| 0.002 | 17.02 | 400 | 0.0356 | 2.1837 |
| 0.0012 | 19.15 | 450 | 0.0370 | 3.1501 |
| 0.0009 | 21.28 | 500 | 0.0379 | 2.5821 |
| 0.0007 | 23.4 | 550 | 0.0382 | 2.7995 |
| 0.0006 | 25.53 | 600 | 0.0386 | 2.8318 |
| 0.0006 | 27.66 | 650 | 0.0387 | 2.4541 |
| 0.0006 | 29.79 | 700 | 0.0390 | 2.6404 |
| 0.0006 | 31.91 | 750 | 0.0395 | 2.5614 |
| 0.0006 | 34.04 | 800 | 0.0395 | 2.5317 |
| 0.0006 | 36.17 | 850 | 0.0399 | 2.5886 |
| 0.0006 | 38.3 | 900 | 0.0403 | 2.3829 |
| 0.0006 | 40.43 | 950 | 0.0404 | 2.2937 |
| 0.0006 | 42.55 | 1000 | 0.0404 | 2.2173 |
| 0.0006 | 44.68 | 1050 | 0.0406 | 2.1617 |
| 0.0006 | 46.81 | 1100 | 0.0406 | 2.1669 |
| 0.0006 | 48.94 | 1150 | 0.0407 | 2.1746 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1
- Datasets 2.11.0
- Tokenizers 0.13.3
|