File size: 2,302 Bytes
a788b5c 7e149e0 a788b5c 7e149e0 a788b5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- de
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: whisper-tiny-french-HanNeurAI
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: 'config: de, split: test'
metrics:
- name: Wer
type: wer
value: 38.84530607837283
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-french-HanNeurAI
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6998
- Wer: 38.8453
This fine-tuning model is part of my school project. With limitation of my compute, I scaled down the dataset
Additional information and demo code can be found in this github: [HanCreation/Whisper-Tiny-German](https://github.com/HanCreation/Whisper-Tiny-German)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6833 | 0.16 | 1000 | 0.8090 | 43.6285 |
| 0.6272 | 0.32 | 2000 | 0.7441 | 41.3900 |
| 0.5671 | 0.48 | 3000 | 0.7124 | 40.0427 |
| 0.5593 | 0.64 | 4000 | 0.6998 | 38.8453 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|