LiquAId commited on
Commit
ff7632f
1 Parent(s): 90ffc6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -86
README.md CHANGED
@@ -1,86 +1,89 @@
1
- ---
2
- language:
3
- - de
4
- license: apache-2.0
5
- base_model: openai/whisper-tiny
6
- tags:
7
- - generated_from_trainer
8
- datasets:
9
- - mozilla-foundation/common_voice_11_0
10
- metrics:
11
- - wer
12
- model-index:
13
- - name: whisper-tiny-german-V2-HanNeurAI
14
- results:
15
- - task:
16
- name: Automatic Speech Recognition
17
- type: automatic-speech-recognition
18
- dataset:
19
- name: Common Voice 11.0
20
- type: mozilla-foundation/common_voice_11_0
21
- config: de
22
- split: test
23
- args: 'config: de, split: test'
24
- metrics:
25
- - name: Wer
26
- type: wer
27
- value: 32.33273006844562
28
- ---
29
-
30
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
- should probably proofread and complete it, then remove this comment. -->
32
-
33
- # whisper-tiny-german-V2-HanNeurAI
34
-
35
- This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
36
- It achieves the following results on the evaluation set:
37
- - Loss: 0.5818
38
- - Wer: 32.3327
39
-
40
- ## Model description
41
-
42
- More information needed
43
-
44
- ## Intended uses & limitations
45
-
46
- More information needed
47
-
48
- ## Training and evaluation data
49
-
50
- More information needed
51
-
52
- ## Training procedure
53
-
54
- ### Training hyperparameters
55
-
56
- The following hyperparameters were used during training:
57
- - learning_rate: 1e-05
58
- - train_batch_size: 16
59
- - eval_batch_size: 8
60
- - seed: 42
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_steps: 500
64
- - training_steps: 8000
65
- - mixed_precision_training: Native AMP
66
-
67
- ### Training results
68
-
69
- | Training Loss | Epoch | Step | Validation Loss | Wer |
70
- |:-------------:|:-----:|:----:|:---------------:|:-------:|
71
- | 0.2054 | 0.08 | 1000 | 0.7062 | 39.0698 |
72
- | 0.1861 | 0.16 | 2000 | 0.6687 | 36.4857 |
73
- | 0.1677 | 0.24 | 3000 | 0.6393 | 35.6849 |
74
- | 0.2019 | 0.32 | 4000 | 0.6193 | 34.4385 |
75
- | 0.1808 | 0.4 | 5000 | 0.6103 | 33.8459 |
76
- | 0.1697 | 0.48 | 6000 | 0.5956 | 32.8519 |
77
- | 0.1468 | 0.56 | 7000 | 0.5884 | 32.7029 |
78
- | 0.1906 | 0.64 | 8000 | 0.5818 | 32.3327 |
79
-
80
-
81
- ### Framework versions
82
-
83
- - Transformers 4.40.2
84
- - Pytorch 2.3.0
85
- - Datasets 2.19.1
86
- - Tokenizers 0.19.1
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ license: apache-2.0
5
+ base_model: openai/whisper-tiny
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_11_0
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: whisper-tiny-german-V2-HanNeurAI
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 11.0 German shuffled 200k rows
20
+ type: mozilla-foundation/common_voice_11_0
21
+ config: de
22
+ split: test
23
+ args: 'config: de, split: test'
24
+ metrics:
25
+ - name: Wer
26
+ type: wer
27
+ value: 32.33273006844562
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # whisper-tiny-german-V2-HanNeurAI
34
+
35
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.5818
38
+ - Wer: 32.3327
39
+
40
+ This fine-tuning model is part of my school project.
41
+ With limitation of my compute, I scale down the dataset from german common voice to shuffled 100k rows
42
+ ## Model description
43
+
44
+ Model Parameter (pipe.model.num_parameters()): 37760640 (37M)
45
+
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 1e-05
61
+ - train_batch_size: 16
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - lr_scheduler_warmup_steps: 500
67
+ - training_steps: 8000
68
+ - mixed_precision_training: Native AMP
69
+
70
+ ### Training results
71
+
72
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
73
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|
74
+ | 0.2054 | 0.08 | 1000 | 0.7062 | 39.0698 |
75
+ | 0.1861 | 0.16 | 2000 | 0.6687 | 36.4857 |
76
+ | 0.1677 | 0.24 | 3000 | 0.6393 | 35.6849 |
77
+ | 0.2019 | 0.32 | 4000 | 0.6193 | 34.4385 |
78
+ | 0.1808 | 0.4 | 5000 | 0.6103 | 33.8459 |
79
+ | 0.1697 | 0.48 | 6000 | 0.5956 | 32.8519 |
80
+ | 0.1468 | 0.56 | 7000 | 0.5884 | 32.7029 |
81
+ | 0.1906 | 0.64 | 8000 | 0.5818 | 32.3327 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.40.2
87
+ - Pytorch 2.3.0
88
+ - Datasets 2.19.1
89
+ - Tokenizers 0.19.1