--- language: - de license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-tiny-german-V2-HanNeurAI results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 German shuffled 200k rows type: mozilla-foundation/common_voice_11_0 config: de split: test args: 'config: de, split: test' metrics: - name: Wer type: wer value: 32.33273006844562 --- # whisper-tiny-german-V2-HanNeurAI This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5818 - Wer: 32.3327 This fine-tuning model is part of my school project. With limitation of my compute, I scale down the dataset from german common voice to shuffled 200k rows ## Model description Model Parameter (pipe.model.num_parameters()): 37760640 (37M) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2054 | 0.08 | 1000 | 0.7062 | 39.0698 | | 0.1861 | 0.16 | 2000 | 0.6687 | 36.4857 | | 0.1677 | 0.24 | 3000 | 0.6393 | 35.6849 | | 0.2019 | 0.32 | 4000 | 0.6193 | 34.4385 | | 0.1808 | 0.4 | 5000 | 0.6103 | 33.8459 | | 0.1697 | 0.48 | 6000 | 0.5956 | 32.8519 | | 0.1468 | 0.56 | 7000 | 0.5884 | 32.7029 | | 0.1906 | 0.64 | 8000 | 0.5818 | 32.3327 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1