andrijdavid commited on
Commit
6b7073c
1 Parent(s): 1af792c

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +435 -0
README.md ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ---
4
+ license: other
5
+ tags:
6
+ - generated_from_trainer
7
+ - axolotl
8
+ - GGUF
9
+ base_model: meta-llama/Meta-Llama-3-8B
10
+ datasets:
11
+ - cognitivecomputations/Dolphin-2.9
12
+ - teknium/OpenHermes-2.5
13
+ - m-a-p/CodeFeedback-Filtered-Instruction
14
+ - cognitivecomputations/dolphin-coder
15
+ - cognitivecomputations/samantha-data
16
+ - HuggingFaceH4/ultrachat_200k
17
+ - microsoft/orca-math-word-problems-200k
18
+ - abacusai/SystemChat-1.1
19
+ - Locutusque/function-calling-chatml
20
+ - internlm/Agent-FLAN
21
+ model-index:
22
+ - name: out
23
+ results: []
24
+ quantized_by: andrijdavid
25
+ ---
26
+ # dolphin-2.9-llama3-8b-GGUF
27
+ - Original model: [dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b)
28
+
29
+ <!-- description start -->
30
+ ## Description
31
+
32
+ This repo contains GGUF format model files for [dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b).
33
+
34
+ <!-- description end -->
35
+ <!-- README_GGUF.md-about-gguf start -->
36
+ ### About GGUF
37
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
38
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
39
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option.
40
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration.
41
+ * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​
42
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling.
43
+ * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration.
44
+ * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration.
45
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection.
46
+ * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration.
47
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server.
48
+ * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use.
49
+ * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server.
50
+ * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
51
+ <!-- README_GGUF.md-about-gguf end -->
52
+
53
+ <!-- compatibility_gguf start -->
54
+ ## Explanation of quantisation methods
55
+ <details>
56
+ <summary>Click to see details</summary>
57
+ The new methods available are:
58
+
59
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
60
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
61
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
62
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
63
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw.
64
+ </details>
65
+ <!-- compatibility_gguf end -->
66
+
67
+ <!-- README_GGUF.md-how-to-download start -->
68
+ ## How to download GGUF files
69
+
70
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder.
71
+
72
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
73
+
74
+ * LM Studio
75
+ * LoLLMS Web UI
76
+ * Faraday.dev
77
+
78
+ ### In `text-generation-webui`
79
+
80
+ Under Download Model, you can enter the model repo: LiteLLMs/dolphin-2.9-llama3-8b-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf.
81
+
82
+ Then click Download.
83
+
84
+ ### On the command line, including multiple files at once
85
+
86
+ I recommend using the `huggingface-hub` Python library:
87
+
88
+ ```shell
89
+ pip3 install huggingface-hub
90
+ ```
91
+
92
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
93
+
94
+ ```shell
95
+ huggingface-cli download LiteLLMs/dolphin-2.9-llama3-8b-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
96
+ ```
97
+
98
+ <details>
99
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
100
+
101
+ You can also download multiple files at once with a pattern:
102
+
103
+ ```shell
104
+ huggingface-cli download LiteLLMs/dolphin-2.9-llama3-8b-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
105
+ ```
106
+
107
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
108
+
109
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
110
+
111
+ ```shell
112
+ pip3 install huggingface_hub[hf_transfer]
113
+ ```
114
+
115
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
116
+
117
+ ```shell
118
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/dolphin-2.9-llama3-8b-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
119
+ ```
120
+
121
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
122
+ </details>
123
+ <!-- README_GGUF.md-how-to-download end -->
124
+ <!-- README_GGUF.md-how-to-run start -->
125
+ ## Example `llama.cpp` command
126
+
127
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
128
+
129
+ ```shell
130
+ ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
131
+ ```
132
+
133
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
134
+
135
+ Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
136
+
137
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
138
+
139
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
140
+
141
+ ## How to run in `text-generation-webui`
142
+
143
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
144
+
145
+ ## How to run from Python code
146
+
147
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
148
+
149
+ ### How to load this model in Python code, using llama-cpp-python
150
+
151
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
152
+
153
+ #### First install the package
154
+
155
+ Run one of the following commands, according to your system:
156
+
157
+ ```shell
158
+ # Base ctransformers with no GPU acceleration
159
+ pip install llama-cpp-python
160
+ # With NVidia CUDA acceleration
161
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
162
+ # Or with OpenBLAS acceleration
163
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
164
+ # Or with CLBLast acceleration
165
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
166
+ # Or with AMD ROCm GPU acceleration (Linux only)
167
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
168
+ # Or with Metal GPU acceleration for macOS systems only
169
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
170
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
171
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
172
+ pip install llama-cpp-python
173
+ ```
174
+
175
+ #### Simple llama-cpp-python example code
176
+
177
+ ```python
178
+ from llama_cpp import Llama
179
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
180
+ llm = Llama(
181
+ model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first
182
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
183
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
184
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
185
+ )
186
+ # Simple inference example
187
+ output = llm(
188
+ "<PROMPT>", # Prompt
189
+ max_tokens=512, # Generate up to 512 tokens
190
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
191
+ echo=True # Whether to echo the prompt
192
+ )
193
+ # Chat Completion API
194
+ llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
195
+ llm.create_chat_completion(
196
+ messages = [
197
+ {"role": "system", "content": "You are a story writing assistant."},
198
+ {
199
+ "role": "user",
200
+ "content": "Write a story about llamas."
201
+ }
202
+ ]
203
+ )
204
+ ```
205
+
206
+ ## How to use with LangChain
207
+
208
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
209
+
210
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
211
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
212
+
213
+ <!-- README_GGUF.md-how-to-run end -->
214
+
215
+ <!-- footer end -->
216
+
217
+ <!-- original-model-card start -->
218
+ # Original model card: dolphin-2.9-llama3-8b
219
+
220
+
221
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
222
+ should probably proofread and complete it, then remove this comment. -->
223
+
224
+ # Dolphin 2.9 Llama 3 8b 🐬
225
+
226
+ Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations
227
+
228
+ Discord: https://discord.gg/8fbBeC7ZGx
229
+
230
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />
231
+
232
+ My appreciation for the sponsors of Dolphin 2.9:
233
+ - [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 10xL40S node
234
+
235
+ This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE)
236
+
237
+ The base model has 8k context, and the full-weight fine-tuning was with 4k sequence length.
238
+
239
+ It took 2.5 days on 8x L40S provided by Crusoe Cloud
240
+
241
+ This model was trained FFT on all parameters, using ChatML prompt template format.
242
+
243
+ example:
244
+
245
+ ```
246
+ <|im_start|>system
247
+ You are Dolphin, a helpful AI assistant.<|im_end|>
248
+ <|im_start|>user
249
+ {prompt}<|im_end|>
250
+ <|im_start|>assistant
251
+
252
+ ```
253
+
254
+ Dolphin-2.9 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
255
+
256
+ Dolphin is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
257
+
258
+ Dolphin is licensed according to Meta's Llama license. I grant permission for any use, including commercial, that falls within accordance with Meta's Llama-3 license. Dolphin was trained on data generated from GPT4, among other models.
259
+
260
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
261
+ <details><summary>See axolotl config</summary>
262
+
263
+ axolotl version: `0.4.0`
264
+ ```yaml
265
+ base_model: meta-llama/Meta-Llama-3-8B
266
+ model_type: AutoModelForCausalLM
267
+ tokenizer_type: AutoTokenizer
268
+ tokenizer_use_fast: false
269
+
270
+
271
+ load_in_8bit: false
272
+ load_in_4bit: false
273
+ strict: false
274
+ model_config:
275
+
276
+ datasets:
277
+ - path: /workspace/datasets/dolphin-2.9/dolphin201-sharegpt2.jsonl
278
+ type: sharegpt
279
+ conversation: chatml
280
+ - path: /workspace/datasets/dolphin-2.9/Ultrachat200kunfiltered.jsonl
281
+ type: sharegpt
282
+ conversation: chatml
283
+ - path: /workspace/datasets/dolphin-2.9/dolphin-coder-translate-sharegpt2.jsonl
284
+ type: sharegpt
285
+ conversation: chatml
286
+ - path: /workspace/datasets/dolphin-2.9/dolphin-coder-codegen-sharegpt2.jsonl
287
+ type: sharegpt
288
+ conversation: chatml
289
+ - path: /workspace/datasets/dolphin-2.9/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
290
+ type: sharegpt
291
+ conversation: chatml
292
+ - path: /workspace/datasets/dolphin-2.9/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
293
+ type: sharegpt
294
+ conversation: chatml
295
+ - path: /workspace/datasets/dolphin-2.9/not_samantha_norefusals.jsonl
296
+ type: sharegpt
297
+ conversation: chatml
298
+ - path: /workspace/datasets/dolphin-2.9/Orca-Math-resort-unfiltered.jsonl
299
+ type: sharegpt
300
+ conversation: chatml
301
+ - path: /workspace/datasets/dolphin-2.9/agent_instruct_react_unfiltered.jsonl
302
+ type: sharegpt
303
+ conversation: chatml
304
+ - path: /workspace/datasets/dolphin-2.9/toolbench_instruct_j1s1_3k_unfiltered.jsonl
305
+ type: sharegpt
306
+ conversation: chatml
307
+ - path: /workspace/datasets/dolphin-2.9/toolbench_negative_unfiltered.jsonl
308
+ type: sharegpt
309
+ conversation: chatml
310
+ - path: /workspace/datasets/dolphin-2.9/toolbench_react_10p_unfiltered.jsonl
311
+ type: sharegpt
312
+ conversation: chatml
313
+ - path: /workspace/datasets/dolphin-2.9/toolbench_tflan_cot_30p_unfiltered.jsonl
314
+ type: sharegpt
315
+ conversation: chatml
316
+ - path: /workspace/datasets/dolphin-2.9/openhermes200k_unfiltered.jsonl
317
+ type: sharegpt
318
+ conversation: chatml
319
+ - path: /workspace/datasets/dolphin-2.9/SystemConversations.jsonl
320
+ type: sharegpt
321
+ conversation: chatml
322
+
323
+ chat_template: chatml
324
+
325
+
326
+ dataset_prepared_path: /workspace/datasets/dolphin-2.9/thingy
327
+ val_set_size: 0.0002
328
+ output_dir: ./out
329
+
330
+ sequence_len: 4096
331
+ sample_packing: true
332
+ pad_to_sequence_len: true
333
+
334
+ gradient_accumulation_steps: 4
335
+ micro_batch_size: 3
336
+ num_epochs: 3
337
+ logging_steps: 1
338
+ optimizer: adamw_8bit
339
+ lr_scheduler: cosine
340
+ learning_rate: 2e-5
341
+
342
+ wandb_project: dolphin-2.9-mixtral-8x22b
343
+ wandb_watch:
344
+ wandb_run_id:
345
+ wandb_log_model:
346
+
347
+ train_on_inputs: false
348
+ group_by_length: false
349
+ bf16: auto
350
+ fp16:
351
+ tf32: false
352
+
353
+ gradient_checkpointing: true
354
+ gradient_checkpointing_kwargs:
355
+ use_reentrant: false
356
+ early_stopping_patience:
357
+ resume_from_checkpoint:
358
+ local_rank:
359
+ logging_steps: 1
360
+ xformers_attention:
361
+ flash_attention: true
362
+ saves_per_epoch: 4
363
+ save_total_limit: 2
364
+ save_steps:
365
+ evals_per_epoch: 4
366
+ eval_sample_packing: false
367
+ debug:
368
+ deepspeed: deepspeed_configs/zero3_bf16.json
369
+ weight_decay: 0.05
370
+ fsdp:
371
+ fsdp_config:
372
+ special_tokens:
373
+ eos_token: "<|im_end|>"
374
+ pad_token: "<|end_of_text|>"
375
+ tokens:
376
+ - "<|im_start|>"
377
+ - "<|im_end|>"
378
+
379
+ ```
380
+
381
+ </details><br>
382
+
383
+ ## Quants
384
+
385
+ GGUF : https://huggingface.co/QuantFactory/dolphin-2.9-llama3-8b-GGUF
386
+
387
+ GGUF with imatrix: https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF
388
+
389
+ Exllamav2: https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-exl2
390
+
391
+ ## Training procedure
392
+
393
+ ### Training hyperparameters
394
+
395
+ The following hyperparameters were used during training:
396
+ - learning_rate: 2e-05
397
+ - train_batch_size: 3
398
+ - eval_batch_size: 3
399
+ - seed: 42
400
+ - distributed_type: multi-GPU
401
+ - num_devices: 8
402
+ - gradient_accumulation_steps: 4
403
+ - total_train_batch_size: 96
404
+ - total_eval_batch_size: 24
405
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
406
+ - lr_scheduler_type: cosine
407
+ - lr_scheduler_warmup_steps: 7
408
+ - num_epochs: 3
409
+
410
+ ### Training results
411
+
412
+ | Training Loss | Epoch | Step | Validation Loss |
413
+ | :-: | :--: | :-: |
414
+ | 1.146 | 0.0005 | 1 | 1.1064 |
415
+ | 0.6962 | 0.2501 | 555 | 0.6636 |
416
+ | 0.6857 | 0.5001 | 1110 | 0.6503 |
417
+ | 0.6592 | 0.7502 | 1665 | 0.6419 |
418
+ | 0.6465 | 1.0002 | 2220 | 0.6317 |
419
+ | 0.5295 | 1.2395 | 2775 | 0.6408 |
420
+ | 0.5302 | 1.4895 | 3330 | 0.6351 |
421
+ | 0.5188 | 1.7396 | 3885 | 0.6227 |
422
+ | 0.521 | 1.9896 | 4440 | 0.6168 |
423
+ | 0.3968 | 2.2289 | 4995 | 0.6646 |
424
+ | 0.3776 | 2.4789 | 5550 | 0.6619 |
425
+ | 0.3983 | 2.7290 | 6105 | 0.6602 |
426
+
427
+
428
+ ### Framework versions
429
+
430
+ - Transformers 4.40.0
431
+ - Pytorch 2.2.2+cu121
432
+ - Datasets 2.18.0
433
+ - Tokenizers 0.19.1
434
+
435
+ <!-- original-model-card end -->