|
--- |
|
license: gemma |
|
base_model: google/gemma-2b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: G0514HMA23H |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# G0514HMA23H |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: -17.8940 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 80 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.8474 | 0.09 | 10 | -0.1051 | |
|
| -1.133 | 0.18 | 20 | -2.6746 | |
|
| -4.0726 | 0.27 | 30 | -5.9791 | |
|
| -7.4096 | 0.36 | 40 | -9.2948 | |
|
| -10.5075 | 0.45 | 50 | -12.1604 | |
|
| -13.1872 | 0.54 | 60 | -14.5712 | |
|
| -15.3198 | 0.63 | 70 | -16.1577 | |
|
| -16.5601 | 0.73 | 80 | -17.0062 | |
|
| -17.1749 | 0.82 | 90 | -17.3669 | |
|
| -17.4459 | 0.91 | 100 | -17.5280 | |
|
| -17.5636 | 1.0 | 110 | -17.6099 | |
|
| -17.6344 | 1.09 | 120 | -17.6593 | |
|
| -17.6708 | 1.18 | 130 | -17.6865 | |
|
| -17.6958 | 1.27 | 140 | -17.7099 | |
|
| -17.7175 | 1.36 | 150 | -17.7283 | |
|
| -17.7369 | 1.45 | 160 | -17.7437 | |
|
| -17.7549 | 1.54 | 170 | -17.7646 | |
|
| -17.7752 | 1.63 | 180 | -17.7824 | |
|
| -17.785 | 1.72 | 190 | -17.7920 | |
|
| -17.8012 | 1.81 | 200 | -17.8080 | |
|
| -17.8109 | 1.9 | 210 | -17.8184 | |
|
| -17.8264 | 1.99 | 220 | -17.8386 | |
|
| -17.85 | 2.08 | 230 | -17.8633 | |
|
| -17.8652 | 2.18 | 240 | -17.8736 | |
|
| -17.8735 | 2.27 | 250 | -17.8818 | |
|
| -17.8791 | 2.36 | 260 | -17.8860 | |
|
| -17.8821 | 2.45 | 270 | -17.8882 | |
|
| -17.8883 | 2.54 | 280 | -17.8912 | |
|
| -17.891 | 2.63 | 290 | -17.8924 | |
|
| -17.8909 | 2.72 | 300 | -17.8933 | |
|
| -17.8886 | 2.81 | 310 | -17.8938 | |
|
| -17.8926 | 2.9 | 320 | -17.8939 | |
|
| -17.8924 | 2.99 | 330 | -17.8940 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.0 |
|
|