File size: 2,703 Bytes
d4775c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-50m-multi-species
tags:
- generated_from_trainer
metrics:
- f1
- matthews_correlation
- accuracy
model-index:
- name: gut_1024b-finetuned-lora-v2-50m-multi-species
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gut_1024b-finetuned-lora-v2-50m-multi-species

This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-50m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-50m-multi-species) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4237
- F1: 0.8660
- Matthews Correlation: 0.6384
- Accuracy: 0.8252
- F1 Score: 0.8660

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Matthews Correlation | Accuracy | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------:|:--------:|:--------:|
| 0.6937        | 0.02  | 100  | 0.6419          | 0.7758 | 0.2955               | 0.6584   | 0.7758   |
| 0.652         | 0.04  | 200  | 0.5536          | 0.8102 | 0.4925               | 0.7601   | 0.8102   |
| 0.5786        | 0.05  | 300  | 0.5052          | 0.8286 | 0.5183               | 0.7682   | 0.8286   |
| 0.5083        | 0.07  | 400  | 0.5294          | 0.8230 | 0.4972               | 0.7475   | 0.8230   |
| 0.5439        | 0.09  | 500  | 0.4759          | 0.8484 | 0.5865               | 0.8019   | 0.8484   |
| 0.4945        | 0.11  | 600  | 0.5015          | 0.8363 | 0.5424               | 0.7770   | 0.8363   |
| 0.4564        | 0.12  | 700  | 0.4767          | 0.8448 | 0.5911               | 0.8057   | 0.8448   |
| 0.4306        | 0.14  | 800  | 0.4619          | 0.8517 | 0.6066               | 0.8129   | 0.8517   |
| 0.4588        | 0.16  | 900  | 0.4485          | 0.8532 | 0.5973               | 0.8003   | 0.8532   |
| 0.4784        | 0.18  | 1000 | 0.4237          | 0.8660 | 0.6384               | 0.8252   | 0.8660   |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2