--- base_model: AIRI-Institute/gena-lm-bert-base-t2t-multi tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: gut_1024-finetuned-lora-bert-base-t2t-multi results: [] --- # gut_1024-finetuned-lora-bert-base-t2t-multi This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-base-t2t-multi](https://huggingface.co/AIRI-Institute/gena-lm-bert-base-t2t-multi) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4764 - F1: 0.8478 - Mcc Score: 0.5903 - Accuracy: 0.8049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:--------:| | 0.7012 | 0.02 | 100 | 0.6683 | 0.7478 | 0.0 | 0.5971 | | 0.7003 | 0.04 | 200 | 0.6391 | 0.7825 | 0.3306 | 0.6710 | | 0.6583 | 0.05 | 300 | 0.6211 | 0.7853 | 0.3430 | 0.6778 | | 0.6381 | 0.07 | 400 | 0.6512 | 0.7812 | 0.3247 | 0.6681 | | 0.6438 | 0.09 | 500 | 0.6524 | 0.3380 | 0.1874 | 0.5004 | | 0.6028 | 0.11 | 600 | 0.5646 | 0.8004 | 0.5013 | 0.7606 | | 0.5154 | 0.12 | 700 | 0.5437 | 0.8392 | 0.5576 | 0.7884 | | 0.5226 | 0.14 | 800 | 0.4823 | 0.8503 | 0.5901 | 0.8024 | | 0.5104 | 0.16 | 900 | 0.4856 | 0.8452 | 0.5851 | 0.8028 | | 0.5538 | 0.18 | 1000 | 0.4764 | 0.8478 | 0.5903 | 0.8049 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2