File size: 3,313 Bytes
3c996fc
4f6b8b9
 
 
 
 
3c996fc
4f6b8b9
 
 
 
 
 
 
 
f7fd947
d4e9ce4
 
3c996fc
4f6b8b9
79b77a7
4f6b8b9
 
 
 
 
 
 
 
 
 
 
79b77a7
 
 
 
 
 
 
4f6b8b9
 
79b77a7
 
 
 
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
 
 
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
4f6b8b9
80e0567
 
4f6b8b9
 
 
80e0567
4f6b8b9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
'[object Object]': null
language:
- en
library_name: timm
pipeline_tag: image-classification
tags:
- vision
- mapreader
- maps
- National Library of Scotland
- historical
- lam
- humanities
- heritage
license: apache-2.0
datasets:
- Livingwithmachines/MapReader_Data_SIGSPATIAL_2022
---

# Model card for mr_vit_base_patch16_224_timm_pretrain_railspace_and_building

A Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. 
Fine-tuned on gold standard annotations and outputs from early experiments using MapReader  (found [here](https://huggingface.co/datasets/Livingwithmachines/MapReader_Data_SIGSPATIAL_2022)).

## Model Details

### Model Description

- **Model type:** Image classification /feature backbone
- **Finetuned from model:** https://huggingface.co/google/vit-base-patch16-224

### Classes and labels

- 0: no
- 1: railspace
- 2: building
- 3: railspace & building

## Uses

This fine-tuned version of the model is an output of the MapReader pipeline.
It was used to classify 'patch' images (cells/regions) of scanned nineteenth-century series maps of Britain provided by the National Library of Scotland (learn more [here](https://maps.nls.uk/os/)). 
We classified patches to indicate the presence of buildings and railway infrastructure. 
See [our paper](https://dl.acm.org/doi/10.1145/3557919.3565812) for more details about labels.

## How to Get Started with the Model in MapReader

Please go to [the MapReader documentation](https://mapreader.readthedocs.io/en/latest/User-guide/Classify.html) for instructions on how to use this model in MapReader.

## Training, Evaluation and Testing Details

### Training, Evaluation and Testing Data

This model was fine-tuned on [manually-annotated data](https://huggingface.co/datasets/Livingwithmachines/MapReader_Data_SIGSPATIAL_2022).

### Training, Evaluation and Testing Procedure 

Details can be found [here](https://dl.acm.org/doi/10.1145/3557919.3565812). 

Open access version of the article available [here](https://arxiv.org/abs/2111.15592).

### Results

Data outputs can be found [here](https://huggingface.co/datasets/Livingwithmachines/MapReader_Data_SIGSPATIAL_2022).

Further details can be found [here](https://dl.acm.org/doi/10.1145/3557919.3565812).

## More Information 

This model was fine-tuned using MapReader.

The code for MapReader can be found [here](https://github.com/Living-with-machines/MapReader) and the documentation can be found [here](https://mapreader.readthedocs.io/en/latest/).

## Model Card Authors 

- Katie McDonough ([email protected])
- Rosie Wood ([email protected])

## Model Card Contact

Katie McDonough ([email protected])

## Funding Statement

This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). 
Living with Machines, funded by the UK Research and Innovation (UKRI) Strategic Priority Fund, is a multidisciplinary collaboration delivered by the Arts and Humanities Research Council (AHRC), with The Alan Turing Institute, the British Library and Cambridge, King's College London, East Anglia, Exeter, and Queen Mary University of London.