Upload configuration_dbrx.py with huggingface_hub
Browse files- configuration_dbrx.py +264 -0
configuration_dbrx.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Dbrx configuration."""
|
2 |
+
from typing import Any, Optional
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
10 |
+
|
11 |
+
|
12 |
+
class DbrxAttentionConfig(PretrainedConfig):
|
13 |
+
"""Configuration class for Dbrx Attention.
|
14 |
+
|
15 |
+
[`DbrxAttention`] class. It is used to instantiate attention layers
|
16 |
+
according to the specified arguments, defining the layers architecture.
|
17 |
+
|
18 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
19 |
+
documentation from [`PretrainedConfig`] for more information.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
23 |
+
The dropout probability for the attention layers.
|
24 |
+
clip_qkv (`float`, *optional*, defualts to None):
|
25 |
+
If not `None`, clip the queries, keys, and values in the attention layer to this value.
|
26 |
+
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
|
27 |
+
rope_theta (float): The base frequency for rope.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
attn_pdrop: float = 0,
|
33 |
+
clip_qkv: Optional[float] = None,
|
34 |
+
kv_n_heads: int = 1,
|
35 |
+
rope_theta: float = 10000.0,
|
36 |
+
**kwargs: Any,
|
37 |
+
):
|
38 |
+
super().__init__(**kwargs)
|
39 |
+
self.attn_pdrop = attn_pdrop
|
40 |
+
self.clip_qkv = clip_qkv
|
41 |
+
self.kv_n_heads = kv_n_heads
|
42 |
+
self.rope_theta = rope_theta
|
43 |
+
|
44 |
+
for k in ['model_type']:
|
45 |
+
if k in kwargs:
|
46 |
+
kwargs.pop(k)
|
47 |
+
if len(kwargs) != 0:
|
48 |
+
raise ValueError(f'Found unknown {kwargs=}')
|
49 |
+
|
50 |
+
@classmethod
|
51 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str,
|
52 |
+
**kwargs: Any) -> 'PretrainedConfig':
|
53 |
+
cls._set_token_in_kwargs(kwargs)
|
54 |
+
|
55 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path,
|
56 |
+
**kwargs)
|
57 |
+
|
58 |
+
if config_dict.get('model_type') == 'dbrx':
|
59 |
+
config_dict = config_dict['attn_config']
|
60 |
+
|
61 |
+
if 'model_type' in config_dict and hasattr(
|
62 |
+
cls,
|
63 |
+
'model_type') and config_dict['model_type'] != cls.model_type:
|
64 |
+
logger.warning(
|
65 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
66 |
+
+
|
67 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
68 |
+
)
|
69 |
+
|
70 |
+
return cls.from_dict(config_dict, **kwargs)
|
71 |
+
|
72 |
+
|
73 |
+
class DbrxFFNConfig(PretrainedConfig):
|
74 |
+
"""Configuration class for Dbrx FFN.
|
75 |
+
|
76 |
+
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to
|
77 |
+
the specified arguments, defining the layers architecture.
|
78 |
+
|
79 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
80 |
+
documentation from [`PretrainedConfig`] for more information.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
ffn_act_fn (dict, optional): A dict specifying activation function for the FFN.
|
84 |
+
The dict should have a key 'name' with the value being the name of
|
85 |
+
the activation function along with any additional keyword arguments.
|
86 |
+
ffn_hidden_size (int, optional): The hidden size of the feedforward network.
|
87 |
+
moe_num_experts (int, optional): The number of experts in the mixture of experts layer.
|
88 |
+
moe_top_k (int, optional): The number of experts to use in the mixture of experts layer.
|
89 |
+
moe_jitter_eps (float, optional): The jitter epsilon for the mixture of experts layer.
|
90 |
+
moe_loss_weight (float, optional): The loss weight for the mixture of experts layer.
|
91 |
+
moe_normalize_expert_weights (float, optional): The normalization factor for the expert weights.
|
92 |
+
uniform_expert_assignment (bool, optional): Whether to use uniform expert assignment.
|
93 |
+
This should only be used for benchmarking purposes.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
ffn_act_fn: Optional[dict] = None,
|
99 |
+
ffn_hidden_size: int = 3584,
|
100 |
+
moe_num_experts: int = 4,
|
101 |
+
moe_top_k: int = 1,
|
102 |
+
moe_jitter_eps: Optional[float] = None,
|
103 |
+
moe_loss_weight: float = 0.01,
|
104 |
+
moe_normalize_expert_weights: Optional[float] = 1,
|
105 |
+
uniform_expert_assignment: bool = False,
|
106 |
+
**kwargs: Any,
|
107 |
+
):
|
108 |
+
super().__init__()
|
109 |
+
if ffn_act_fn is None:
|
110 |
+
ffn_act_fn = {'name': 'silu'}
|
111 |
+
self.ffn_act_fn = ffn_act_fn
|
112 |
+
self.ffn_hidden_size = ffn_hidden_size
|
113 |
+
self.moe_num_experts = moe_num_experts
|
114 |
+
self.moe_top_k = moe_top_k
|
115 |
+
self.moe_jitter_eps = moe_jitter_eps
|
116 |
+
self.moe_loss_weight = moe_loss_weight
|
117 |
+
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
118 |
+
self.uniform_expert_assignment = uniform_expert_assignment
|
119 |
+
|
120 |
+
for k in ['model_type']:
|
121 |
+
if k in kwargs:
|
122 |
+
kwargs.pop(k)
|
123 |
+
if len(kwargs) != 0:
|
124 |
+
raise ValueError(f'Found unknown {kwargs=}')
|
125 |
+
|
126 |
+
@classmethod
|
127 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str,
|
128 |
+
**kwargs: Any) -> 'PretrainedConfig':
|
129 |
+
cls._set_token_in_kwargs(kwargs)
|
130 |
+
|
131 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path,
|
132 |
+
**kwargs)
|
133 |
+
|
134 |
+
if config_dict.get('model_type') == 'dbrx':
|
135 |
+
config_dict = config_dict['ffn_config']
|
136 |
+
|
137 |
+
if 'model_type' in config_dict and hasattr(
|
138 |
+
cls,
|
139 |
+
'model_type') and config_dict['model_type'] != cls.model_type:
|
140 |
+
logger.warning(
|
141 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
142 |
+
+
|
143 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
144 |
+
)
|
145 |
+
|
146 |
+
return cls.from_dict(config_dict, **kwargs)
|
147 |
+
|
148 |
+
|
149 |
+
class DbrxConfig(PretrainedConfig):
|
150 |
+
"""Configuration class for Dbrx.
|
151 |
+
|
152 |
+
[`DbrxModel`]. It is used to instantiate a Dbrx model according to the
|
153 |
+
specified arguments, defining the model architecture.
|
154 |
+
|
155 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
156 |
+
documentation from [`PretrainedConfig`] for more information.
|
157 |
+
|
158 |
+
|
159 |
+
Args:
|
160 |
+
d_model (`int`, *optional*, defaults to 6144):
|
161 |
+
Dimensionality of the embeddings and hidden states.
|
162 |
+
n_heads (`int`, *optional*, defaults to 48):
|
163 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
164 |
+
n_layers (`int`, *optional*, defaults to 40):
|
165 |
+
Number of hidden layers in the Transformer encoder.
|
166 |
+
max_seq_len (`int`, *optional*, defaults to 32768):
|
167 |
+
The maximum sequence length of the model.
|
168 |
+
vocab_size (`int`, *optional*, defaults to 100352):
|
169 |
+
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by
|
170 |
+
the `inputs_ids` passed when calling [`DbrxModel`].
|
171 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
172 |
+
The dropout probability applied to the attention output before combining with residual.
|
173 |
+
emb_pdrop (`float`, *optional*, defaults to 0.0):
|
174 |
+
The dropout probability for the embedding layer.
|
175 |
+
attn_config (`dict`, *optional*):
|
176 |
+
A dictionary used to configure the model's attention module.
|
177 |
+
ffn_config (`dict`, *optional*):
|
178 |
+
A dictionary used to configure the model's FFN module.
|
179 |
+
use_cache (`bool`, *optional*, defaults to `False`):
|
180 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
181 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
182 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
183 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
184 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
185 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
186 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
187 |
+
The aux loss factor for the total loss.
|
188 |
+
|
189 |
+
|
190 |
+
Example:
|
191 |
+
```python
|
192 |
+
>>> from transformers import DbrxConfig, DbrxModel
|
193 |
+
|
194 |
+
>>> # Initializing a Dbrx configuration
|
195 |
+
>>> configuration = DbrxConfig()
|
196 |
+
|
197 |
+
>>> # Initializing a model (with random weights) from the configuration
|
198 |
+
>>> model = DbrxModel(configuration)
|
199 |
+
|
200 |
+
>>> # Accessing the model configuration
|
201 |
+
>>> configuration = model.config
|
202 |
+
```
|
203 |
+
"""
|
204 |
+
|
205 |
+
model_type = 'dbrx'
|
206 |
+
attribute_map = {
|
207 |
+
'num_attention_heads': 'n_heads',
|
208 |
+
'hidden_size': 'd_model',
|
209 |
+
'num_hidden_layers': 'n_layers',
|
210 |
+
'max_position_embeddings': 'max_seq_len'
|
211 |
+
}
|
212 |
+
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
d_model: int = 2048,
|
216 |
+
n_heads: int = 16,
|
217 |
+
n_layers: int = 24,
|
218 |
+
max_seq_len: int = 2048,
|
219 |
+
vocab_size: int = 32000,
|
220 |
+
resid_pdrop: float = 0.0,
|
221 |
+
emb_pdrop: float = 0.0,
|
222 |
+
attn_config: Optional[DbrxAttentionConfig] = None,
|
223 |
+
ffn_config: Optional[DbrxFFNConfig] = None,
|
224 |
+
use_cache: bool = True,
|
225 |
+
initializer_range: float = 0.02,
|
226 |
+
output_router_logits: bool = False,
|
227 |
+
router_aux_loss_coef: float = 0.05,
|
228 |
+
**kwargs: Any,
|
229 |
+
):
|
230 |
+
if attn_config is None:
|
231 |
+
self.attn_config = DbrxAttentionConfig()
|
232 |
+
elif isinstance(attn_config, dict):
|
233 |
+
self.attn_config = DbrxAttentionConfig(**attn_config)
|
234 |
+
else:
|
235 |
+
self.attn_config = attn_config
|
236 |
+
|
237 |
+
if ffn_config is None:
|
238 |
+
self.ffn_config = DbrxFFNConfig()
|
239 |
+
elif isinstance(ffn_config, dict):
|
240 |
+
self.ffn_config = DbrxFFNConfig(**ffn_config)
|
241 |
+
else:
|
242 |
+
self.ffn_config = ffn_config
|
243 |
+
|
244 |
+
self.d_model = d_model
|
245 |
+
self.n_heads = n_heads
|
246 |
+
self.n_layers = n_layers
|
247 |
+
self.max_seq_len = max_seq_len
|
248 |
+
self.vocab_size = vocab_size
|
249 |
+
self.resid_pdrop = resid_pdrop
|
250 |
+
self.emb_pdrop = emb_pdrop
|
251 |
+
self.use_cache = use_cache
|
252 |
+
self.initializer_range = initializer_range
|
253 |
+
self.output_router_logits = output_router_logits
|
254 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
255 |
+
|
256 |
+
tie_word_embeddings = kwargs.pop('tie_word_embeddings', False)
|
257 |
+
if tie_word_embeddings:
|
258 |
+
raise ValueError(
|
259 |
+
'tie_word_embeddings is not supported for Dbrx models.')
|
260 |
+
|
261 |
+
super().__init__(
|
262 |
+
tie_word_embeddings=tie_word_embeddings,
|
263 |
+
**kwargs,
|
264 |
+
)
|