--- language: - en license: apache-2.0 tags: - open-source - code - math - chemistry - biology - question-answering - text-generation datasets: - Open-Orca/SlimOrca - glaiveai/glaive-code-assistant - camel-ai/physics - camel-ai/math - camel-ai/chemistry - camel-ai/biology - WizardLM/WizardLM_evol_instruct_V2_196k - microsoft/orca-math-word-problems-200k - grimulkan/theory-of-mind - Vezora/Tested-22k-Python-Alpaca - m-a-p/Code-Feedback - Locutusque/arc-cot - jondurbin/airoboros-2.1 - WizardLM/WizardLM_evol_instruct_70k --- # OpenCerebrum-1.0-7B-SFT OpenCerebrum-1.0-7B-SFT is an open-source language model fine-tuned from the alpindale/Mistral-7B-v0.2-hf base model on a diverse dataset aimed at replicating capabilities of Anthropic's proprietary Cerebrum model. The model was fine-tuned on approximately 1.2 million examples across 14 datasets spanning coding, math, science, reasoning, and general instruction-following. The goal was to assemble public datasets that could help the model achieve strong performance on benchmarks where Cerebrum excels. ## Model Details - **Base Model:** alpindale/Mistral-7B-v0.2-hf - **Parameters:** 7 billion - **Fine-Tuning Dataset Size:** ~1,200,000 examples - **Fine-Tuning Data:** Amalgamation of 14 public datasets - **Language:** English - **License:** Apache 2.0 ## Intended Use OpenCerebrum-1.0-7B-SFT is intended to be a powerful open-source model for coding, math, science, and general question-answering and text generation tasks. Its diverse fine-tuning data aims to equip it with broad knowledge and reasoning capabilities. However, as an open-source replica trained on a subset of data compared to the original Cerebrum, it may not match Cerebrum's full performance. Additionally, biases and limitations of the fine-tuning data may be reflected in the model's outputs. ## Limitations and Biases - The model may have biases and limitations inherited from its fine-tuning datasets. Thorough testing is needed to characterize these. - With 1.2 million training examples, the fine-tuning data is still limited compared to the proprietary Cerebrum data. - As the model is based on a 7B parameter model, it has computational and memory constraints compared to larger models. ## Training Details The model was fine-tuned on the 14 datasets listed in the Datasets section, totaling approximately 1.2 million examples. Default training hyperparameters were used. In the future, the fine-tuning dataset may be condensed to more closely match the 5,000 example dataset reputedly used for the original Cerebrum model.