--- tags: - text-classification base_model: cross-encoder/nli-roberta-base widget: - text: I love AutoTrain license: mit language: - en metrics: - accuracy pipeline_tag: zero-shot-classification library_name: transformers --- # LogicSpine/address-base-text-classifier ## Model Description `LogicSpine/address-base-text-classifier` is a fine-tuned version of the `cross-encoder/nli-roberta-base` model, specifically designed for address classification tasks using zero-shot learning. It allows you to classify text related to addresses and locations without the need for direct training on every possible label. ## Model Usage ### Installation To use this model, you need to install the `transformers` library: ```bash pip install transformers torch ``` ### Loading the Model You can easily load and use this model for zero-shot classification using Hugging Face's pipeline API. ``` from transformers import pipeline # Load the zero-shot classification pipeline with the custom model classifier = pipeline("zero-shot-classification", model="LogicSpine/address-base-text-classifier") # Define your input text and candidate labels text = "Delhi, India" candidate_labels = ["Country", "Department", "Laboratory", "College", "District", "Academy"] # Perform classification result = classifier(text, candidate_labels) # Print the classification result print(result) ``` ## Example Output ``` {'labels': ['Country', 'District', 'Academy', 'College', 'Department', 'Laboratory'], 'scores': [0.19237062335014343, 0.1802321970462799, 0.16583585739135742, 0.16354037821292877, 0.1526614874601364, 0.14535939693450928], 'sequence': 'Delhi, India'} ``` ## Validation Metrics **loss:** `0.28241145610809326` **f1_macro:** `0.8093855588593053` **f1_micro:** `0.9515418502202643` **f1_weighted:** `0.949198754683482` **precision_macro:** `0.8090277777777778` **precision_micro:** `0.9515418502202643` **precision_weighted:** `0.9473201174743024` **recall_macro:** `0.8100845864661653` **recall_micro:** `0.9515418502202643` **recall_weighted:** `0.9515418502202643` **accuracy:** `0.9515418502202643`