File size: 4,469 Bytes
2b7da41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
license: apache-2.0
datasets:
- Open-Orca/OpenOrca
- OpenAssistant/oasst_top1_2023-08-25
language:
- bg
- ca
- cs
- da
- de
- en
- es
- fr
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- uk
library_name: transformers
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/rJ1RxzuE-3gzgCppx-T8f.png)
```
reference-data-model:
datasets:
- OpenAssistant/oasst_top1_2023-08-25:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
link: https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25
model:
- Open-Orca/Mistral-7B-OpenOrca
Link:
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
100 examples of generating:
- Link:
https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2/blob/main/output.xlsx
Activated training with:
- Link:
https://huggingface.co/blog/tomaarsen/attention-sinks
https://github.com/tomaarsen/attention_sinks
https://arxiv.org/abs/2309.17453
Version:
- Link:
https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v1
https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3
```
##
```py
# attention-sinks
pip install attention_sinks
# flash-attn
!export CUDA_HOME=/usr/local/cuda-11.8
!MAX_JOBS=4 pip install flash-attn --no-build-isolation -qqq
!pip install git+"https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary" -qqq
```
## Version
```py
import torch, transformers,torchvision
torch.__version__,transformers.__version__, torchvision.__version__
#OUTPUTS: ('2.0.1+cu118', '4.34.0.dev0', '0.15.2+cu118')
```
## How to use
```py
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
GenerationConfig,
TextIteratorStreamer,
)
from attention_sinks import AutoModelForCausalLM
import torch
# model_id = 'Open-Orca/Mistral-7B-OpenOrca'
model_id='NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2'
model = AutoModelForCausalLM.from_pretrained(model_id,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
load_in_4bit=True,
low_cpu_mem_usage= True,
attention_sink_size=4,
attention_sink_window_size=1024, #512, # <- Low for the sake of faster generation
)
max_length=2048
print("max_length",max_length)
tokenizer = AutoTokenizer.from_pretrained(model_id,
# use_fast = False,
max_length=max_length,)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'right'
#EXAMPLE #1
txt="""<|im_start|>user
I'm looking for an efficient Python script to output prime numbers. Can you help me out? I'm interested in a script that can handle large numbers and output them quickly. Also, it would be great if the script could take a range of numbers as input and output all the prime numbers within that range. Can you generate a script that fits these requirements? Thanks!<|im_end|>
<|im_start|>assistant
"""
#EXAMPLE #2
txt="""<|im_start|>user
Estoy desarrollando una REST API con Nodejs, y estoy tratando de aplicar algún sistema de seguridad, ya sea con tokens o algo similar, me puedes ayudar?<|im_end|>
<|im_start|>assistant
"""
inputs = tokenizer.encode(txt, return_tensors="pt").to("cuda")
generation_config = GenerationConfig(
max_new_tokens=max_new_tokens,
temperature=0.7,
top_p=0.9,
top_k=len_tokens,
repetition_penalty=1.11,
do_sample=True,
# pad_token_id=tokenizer.eos_token_id,
# eos_token_id=tokenizer.eos_token_id,
# use_cache=True,
# stopping_criteria= StoppingCriteriaList([stopping_criteria]),
)
outputs = model.generate(generation_config=generation_config,
input_ids=inputs,)
tokenizer.decode(outputs[0], skip_special_tokens=False) #True
```
|