--- language: - en datasets: - argilla/distilabel-math-preference-dpo pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- # **Sakura-SOLAR-Instruct-DPO-v2** **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Method** Using DPO method. With [argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo). I shared the information about my model. (training and code) Please see: ⭐[Sakura-SOLAR](https://github.com/KyujinHan/Sakura-SOLAR-DPO). # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | Sakura-SOLAR-Instruct-DPO-v2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | | Sakura-SOLAR-Instruct-DPO-v1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | | [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20 # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/Sakura-SOLAR-Instruct-DPO-v2" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---