LovenOO commited on
Commit
d333911
1 Parent(s): 985dd71

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.6705
24
- - Precision: 0.8452
25
- - Recall: 0.8581
26
- - F1: 0.8510
27
- - Accuracy: 0.8818
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 257 | 0.5962 | 0.7414 | 0.8132 | 0.7626 | 0.8268 |
59
- | 0.7597 | 2.0 | 514 | 0.5120 | 0.8170 | 0.8507 | 0.8292 | 0.8652 |
60
- | 0.7597 | 3.0 | 771 | 0.4818 | 0.7975 | 0.8565 | 0.8202 | 0.8652 |
61
- | 0.2391 | 4.0 | 1028 | 0.5223 | 0.8220 | 0.8613 | 0.8377 | 0.8652 |
62
- | 0.2391 | 5.0 | 1285 | 0.5516 | 0.8172 | 0.8599 | 0.8347 | 0.8706 |
63
- | 0.1316 | 6.0 | 1542 | 0.5747 | 0.8139 | 0.8593 | 0.8333 | 0.8710 |
64
- | 0.1316 | 7.0 | 1799 | 0.6290 | 0.8332 | 0.8483 | 0.8386 | 0.8701 |
65
- | 0.0773 | 8.0 | 2056 | 0.6089 | 0.8312 | 0.8620 | 0.8450 | 0.8764 |
66
- | 0.0773 | 9.0 | 2313 | 0.6633 | 0.8384 | 0.8532 | 0.8448 | 0.8774 |
67
- | 0.0633 | 10.0 | 2570 | 0.6705 | 0.8452 | 0.8581 | 0.8510 | 0.8818 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.6213
24
+ - Precision: 0.8399
25
+ - Recall: 0.8622
26
+ - F1: 0.8498
27
+ - Accuracy: 0.8798
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 257 | 0.6305 | 0.7254 | 0.8018 | 0.7512 | 0.8180 |
59
+ | 0.8689 | 2.0 | 514 | 0.4877 | 0.8120 | 0.8500 | 0.8245 | 0.8667 |
60
+ | 0.8689 | 3.0 | 771 | 0.4490 | 0.7911 | 0.8590 | 0.8148 | 0.8599 |
61
+ | 0.2702 | 4.0 | 1028 | 0.4748 | 0.8291 | 0.8689 | 0.8457 | 0.8730 |
62
+ | 0.2702 | 5.0 | 1285 | 0.5217 | 0.8326 | 0.8543 | 0.8413 | 0.8783 |
63
+ | 0.1505 | 6.0 | 1542 | 0.5288 | 0.8351 | 0.8650 | 0.8481 | 0.8754 |
64
+ | 0.1505 | 7.0 | 1799 | 0.5801 | 0.8417 | 0.8585 | 0.8487 | 0.8769 |
65
+ | 0.092 | 8.0 | 2056 | 0.5721 | 0.8402 | 0.8694 | 0.8535 | 0.8818 |
66
+ | 0.092 | 9.0 | 2313 | 0.6135 | 0.8453 | 0.8618 | 0.8522 | 0.8808 |
67
+ | 0.0723 | 10.0 | 2570 | 0.6213 | 0.8399 | 0.8622 | 0.8498 | 0.8798 |
68
 
69
 
70
  ### Framework versions