update model card README.md
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,9 +43,9 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate:
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
|
69 |
|
70 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8590
|
24 |
+
- Precision: 0.8444
|
25 |
+
- Recall: 0.8474
|
26 |
+
- F1: 0.8454
|
27 |
+
- Accuracy: 0.8709
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.8901 | 1.0 | 510 | 0.5727 | 0.7730 | 0.8217 | 0.7887 | 0.8439 |
|
59 |
+
| 0.445 | 2.0 | 1020 | 0.5276 | 0.7930 | 0.8453 | 0.8123 | 0.8444 |
|
60 |
+
| 0.2825 | 3.0 | 1530 | 0.7059 | 0.8374 | 0.8205 | 0.8256 | 0.8606 |
|
61 |
+
| 0.2037 | 4.0 | 2040 | 0.7658 | 0.8562 | 0.8265 | 0.8399 | 0.8660 |
|
62 |
+
| 0.1618 | 5.0 | 2550 | 0.7571 | 0.8332 | 0.8438 | 0.8377 | 0.8640 |
|
63 |
+
| 0.1141 | 6.0 | 3060 | 0.8227 | 0.8499 | 0.8409 | 0.8444 | 0.8694 |
|
64 |
+
| 0.0934 | 7.0 | 3570 | 0.7924 | 0.8377 | 0.8415 | 0.8378 | 0.8665 |
|
65 |
+
| 0.0881 | 8.0 | 4080 | 0.8132 | 0.8365 | 0.8434 | 0.8387 | 0.8699 |
|
66 |
+
| 0.065 | 9.0 | 4590 | 0.8545 | 0.8402 | 0.8430 | 0.8403 | 0.8670 |
|
67 |
+
| 0.0562 | 10.0 | 5100 | 0.8590 | 0.8444 | 0.8474 | 0.8454 | 0.8709 |
|
68 |
|
69 |
|
70 |
### Framework versions
|