File size: 2,018 Bytes
387ecc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: finetuned_text_class
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_text_class
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4994
- Accuracy: 0.7702
- Recall: 0.8076
- Precision: 0.7557
- F1: 0.7808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.499 | 0.9961 | 193 | 0.4700 | 0.7602 | 0.7599 | 0.7652 | 0.7625 |
| 0.3852 | 1.9974 | 387 | 0.4994 | 0.7702 | 0.8076 | 0.7557 | 0.7808 |
| 0.1778 | 2.9987 | 581 | 0.6317 | 0.7638 | 0.6688 | 0.8320 | 0.7415 |
| 0.1007 | 4.0 | 775 | 0.8801 | 0.7609 | 0.7662 | 0.7628 | 0.7645 |
| 0.0567 | 4.9806 | 965 | 1.0289 | 0.7657 | 0.7586 | 0.7744 | 0.7664 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|