--- language: - pt license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model_index: - name: bertimbau-base-lener_br results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br args: lener_br metric: name: Accuracy type: accuracy value: 0.9692504609383333 model-index: - name: Luciano/bertimbau-base-lener_br results: - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: test metrics: - name: Accuracy type: accuracy value: 0.9824282794418222 verified: true - name: Precision type: precision value: 0.9877557596262284 verified: true - name: Recall type: recall value: 0.9870401674313772 verified: true - name: F1 type: f1 value: 0.9873978338768773 verified: true - name: loss type: loss value: 0.11542011797428131 verified: true - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: validation metrics: - name: Accuracy type: accuracy value: 0.9692504609383333 verified: true - name: Precision type: precision value: 0.9786866842043531 verified: true - name: Recall type: recall value: 0.9840619998315222 verified: true - name: F1 type: f1 value: 0.9813669814173863 verified: true - name: loss type: loss value: 0.22302456200122833 verified: true - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: train metrics: - name: Accuracy type: accuracy value: 0.9990127507699392 verified: true - name: Precision type: precision value: 0.9992300721767728 verified: true - name: Recall type: recall value: 0.9993028952029684 verified: true - name: F1 type: f1 value: 0.9992664823630992 verified: true - name: loss type: loss value: 0.0035279043950140476 verified: true --- # bertimbau-base-lener_br This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.2298 - Precision: 0.8501 - Recall: 0.9138 - F1: 0.8808 - Accuracy: 0.9693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0686 | 1.0 | 1957 | 0.1399 | 0.7759 | 0.8669 | 0.8189 | 0.9641 | | 0.0437 | 2.0 | 3914 | 0.1457 | 0.7997 | 0.8938 | 0.8441 | 0.9623 | | 0.0313 | 3.0 | 5871 | 0.1675 | 0.8466 | 0.8744 | 0.8603 | 0.9651 | | 0.0201 | 4.0 | 7828 | 0.1621 | 0.8713 | 0.8839 | 0.8775 | 0.9718 | | 0.0137 | 5.0 | 9785 | 0.1811 | 0.7783 | 0.9159 | 0.8415 | 0.9645 | | 0.0105 | 6.0 | 11742 | 0.1836 | 0.8568 | 0.9009 | 0.8783 | 0.9692 | | 0.0105 | 7.0 | 13699 | 0.1649 | 0.8339 | 0.9125 | 0.8714 | 0.9725 | | 0.0059 | 8.0 | 15656 | 0.2298 | 0.8501 | 0.9138 | 0.8808 | 0.9693 | | 0.0051 | 9.0 | 17613 | 0.2210 | 0.8437 | 0.9045 | 0.8731 | 0.9693 | | 0.0061 | 10.0 | 19570 | 0.2499 | 0.8627 | 0.8946 | 0.8784 | 0.9681 | | 0.0041 | 11.0 | 21527 | 0.1985 | 0.8560 | 0.9052 | 0.8799 | 0.9720 | | 0.003 | 12.0 | 23484 | 0.2204 | 0.8498 | 0.9065 | 0.8772 | 0.9699 | | 0.0014 | 13.0 | 25441 | 0.2152 | 0.8425 | 0.9067 | 0.8734 | 0.9709 | | 0.0005 | 14.0 | 27398 | 0.2317 | 0.8553 | 0.8987 | 0.8765 | 0.9705 | | 0.0015 | 15.0 | 29355 | 0.2436 | 0.8543 | 0.8989 | 0.8760 | 0.9700 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3