--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: ayatsuri/academic-ai-detector results: [] datasets: - NicolaiSivesind/human-vs-machine metrics: - accuracy - recall - precision - f1 pipeline_tag: text-classification --- # ayatsuri/academic-ai-detector This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on [NicolaiSivesind/human-vs-machine](https://huggingface.co/datasets/NicolaiSivesind/human-vs-machine) dataset. It achieves the following best results on the evaluation set: - Train Loss: 0.0910 - Validation Loss: 0.0326 - Train Accuracy: 0.9937 - Train Recall: 0.9927 - Train Precision: 0.9947 - Train F1: 0.9937 - Validation Accuracy: 0.99 - Validation Recall: 0.986 - Validation Precision: 0.9940 - Validation F1: 0.9900 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2625, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Set | Loss | Accuracy | Recall | Precision | F1 | |:----------:|:------:|:--------:|:------:|:---------:|:------:| | Train | 0.0910 | 0.9937 | 0.9927 | 0.9947 | 0.9937 | | Validation | 0.0326 | 0.99 | 0.986 | 0.9940 | 0.9900 | ### Framework versions - Transformers 4.41.1 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1