LumenscopeAI commited on
Commit
c285096
1 Parent(s): 2a540ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -13
README.md CHANGED
@@ -14,10 +14,39 @@ Based on BrainTransformers, BrainGPTForCausalLM is a Large Language Model (LLM)
14
 
15
  The github link is: [LumenScopeAI/BrainTransformers-SNN-LLM](https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM)
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ## Usage
18
 
19
  ### Generate Text
20
- ```
21
  import torch
22
  from transformers import AutoTokenizer, BrainGPTForCausalLM
23
 
@@ -29,25 +58,83 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
29
  model.to(device)
30
 
31
  def generate_text(messages, max_new_tokens=50):
32
- text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
33
- model_inputs = tokenizer([text], return_tensors="pt").to(device)
34
-
35
- with torch.no_grad():
36
- generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens)
37
-
38
- generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
39
- return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
40
 
41
  # Example usage
42
  messages = [
43
- {"role": "system", "content": "You are a knowledgeable assistant."},
44
- {"role": "user", "content": "Explain the Pythagorean theorem."}
45
  ]
46
  response = generate_text(messages)
47
  print(response)
48
  ```
49
 
50
-
51
  ---
52
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ---
 
14
 
15
  The github link is: [LumenScopeAI/BrainTransformers-SNN-LLM](https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM)
16
 
17
+ ## Model Performance
18
+
19
+ Below are the performance metrics of our 3B model on various benchmarks:
20
+
21
+ | Task Category | Dataset | Performance |
22
+ |---------------|---------|-------------|
23
+ | General Tasks | MMLU | 65.6 |
24
+ | | MMLU-pro | 34.6 |
25
+ | | MMLU-redux | 63.7 |
26
+ | | BBH | 56.3 |
27
+ | | ARC-C | 56.5 |
28
+ | | Trurhfulqa | 48.9 |
29
+ | | Winogrande | 71.1 |
30
+ | | Hellaswag | 74.6 |
31
+ | Math and Science Tasks | GPQA | 26.3 |
32
+ | | Theoremqa | 27.4 |
33
+ | | MATH | 42.6 |
34
+ | | MMLU-stem | 62.5 |
35
+ | | GSM8K | 79.1 |
36
+ | Coding Tasks | HumanEval | 42.1 |
37
+ | | HumanEval+ | 36.0 |
38
+ | | MBPP | 57.1 |
39
+ | | MBPP+ | 49.4 |
40
+ | | MultiPL-E | 41.2 |
41
+ | Multilingual Tasks | Multi-Exam | 54.6 |
42
+ | | Multi-Understanding | 76.6 |
43
+ | | Multi-Mathematics | 48.9 |
44
+ | | Multi-Translation | 29.3 |
45
+
46
  ## Usage
47
 
48
  ### Generate Text
49
+ ```python
50
  import torch
51
  from transformers import AutoTokenizer, BrainGPTForCausalLM
52
 
 
58
  model.to(device)
59
 
60
  def generate_text(messages, max_new_tokens=50):
61
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
62
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
63
+
64
+ with torch.no_grad():
65
+ generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens)
66
+
67
+ generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
68
+ return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
69
 
70
  # Example usage
71
  messages = [
72
+ {"role": "system", "content": "You are a knowledgeable assistant."},
73
+ {"role": "user", "content": "Explain the Pythagorean theorem."}
74
  ]
75
  response = generate_text(messages)
76
  print(response)
77
  ```
78
 
 
79
  ---
80
+ model-index:
81
+ - name: BrainTransformers-3B-Chat
82
+ results:
83
+ - task:
84
+ type: text-generation
85
+ dataset:
86
+ name: mmlu
87
+ type: mmlu
88
+ metrics:
89
+ - name: MMLU
90
+ type: MMLU
91
+ value: 65.6
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ name: bbh
96
+ type: bbh
97
+ metrics:
98
+ - name: BBH
99
+ type: BBH
100
+ value: 56.3
101
+ - task:
102
+ type: text-generation
103
+ dataset:
104
+ name: arc-challenge
105
+ type: arc-challenge
106
+ metrics:
107
+ - name: ARC-C
108
+ type: ARC-C
109
+ value: 56.5
110
+ - task:
111
+ type: text-generation
112
+ dataset:
113
+ name: hellaswag
114
+ type: hellaswag
115
+ metrics:
116
+ - name: HellaSwag
117
+ type: HellaSwag
118
+ value: 74.6
119
+ - task:
120
+ type: text-generation
121
+ dataset:
122
+ name: gsm8k
123
+ type: gsm8k
124
+ metrics:
125
+ - name: GSM8K
126
+ type: GSM8K
127
+ value: 79.1
128
+ - task:
129
+ type: code-generation
130
+ dataset:
131
+ name: humaneval
132
+ type: humaneval
133
+ metrics:
134
+ - name: HumanEval
135
+ type: HumanEval
136
+ value: 42.1
137
+ source:
138
+ name: LumenScopeAI
139
+ url: https://github.com/LumenScopeAI/BrainTransformers-SNN-LLM
140
  ---