LynnKukunda commited on
Commit
3281f90
1 Parent(s): ec04839

Model save

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/swin-tiny-patch4-window7-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ - precision
13
+ - recall
14
+ model-index:
15
+ - name: swin-tiny-patch4-window7-224-image-classifier
16
+ results:
17
+ - task:
18
+ name: Image Classification
19
+ type: image-classification
20
+ dataset:
21
+ name: imagefolder
22
+ type: imagefolder
23
+ config: default
24
+ split: train
25
+ args: default
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.748792270531401
30
+ - name: F1
31
+ type: f1
32
+ value: 0.655421686746988
33
+ - name: Precision
34
+ type: precision
35
+ value: 0.6267281105990783
36
+ - name: Recall
37
+ type: recall
38
+ value: 0.6868686868686869
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # swin-tiny-patch4-window7-224-image-classifier
45
+
46
+ This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.4362
49
+ - Accuracy: 0.7488
50
+ - F1: 0.6554
51
+ - Precision: 0.6267
52
+ - Recall: 0.6869
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 1e-05
72
+ - train_batch_size: 64
73
+ - eval_batch_size: 64
74
+ - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 5
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 0.5982 | 1.0 | 143 | 0.5693 | 0.6711 | 0.4144 | 0.5441 | 0.3346 |
85
+ | 0.4391 | 2.0 | 286 | 0.4924 | 0.7295 | 0.4849 | 0.7178 | 0.3662 |
86
+ | 0.3658 | 3.0 | 429 | 0.4332 | 0.7501 | 0.6459 | 0.6368 | 0.6553 |
87
+ | 0.3404 | 4.0 | 572 | 0.4202 | 0.7694 | 0.6525 | 0.6857 | 0.6225 |
88
+ | 0.3188 | 5.0 | 715 | 0.4362 | 0.7488 | 0.6554 | 0.6267 | 0.6869 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.46.0
94
+ - Pytorch 2.5.0+cu121
95
+ - Datasets 3.0.2
96
+ - Tokenizers 0.20.1