--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: swin-tiny-patch4-window7-224-image-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.748792270531401 - name: F1 type: f1 value: 0.655421686746988 - name: Precision type: precision value: 0.6267281105990783 - name: Recall type: recall value: 0.6868686868686869 --- # swin-tiny-patch4-window7-224-image-classifier This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4362 - Accuracy: 0.7488 - F1: 0.6554 - Precision: 0.6267 - Recall: 0.6869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5982 | 1.0 | 143 | 0.5693 | 0.6711 | 0.4144 | 0.5441 | 0.3346 | | 0.4391 | 2.0 | 286 | 0.4924 | 0.7295 | 0.4849 | 0.7178 | 0.3662 | | 0.3658 | 3.0 | 429 | 0.4332 | 0.7501 | 0.6459 | 0.6368 | 0.6553 | | 0.3404 | 4.0 | 572 | 0.4202 | 0.7694 | 0.6525 | 0.6857 | 0.6225 | | 0.3188 | 5.0 | 715 | 0.4362 | 0.7488 | 0.6554 | 0.6267 | 0.6869 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1